A topological duality for monadic MV-algebras

被引:6
|
作者
Figallo-Orellano, Aldo [1 ]
机构
[1] Univ Nacl Sur, Dept Matemat, Buenos Aires, DF, Argentina
关键词
Compendex;
D O I
10.1007/s00500-016-2255-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Monadic MV-algebras are an algebraic model of first-order infinite-valued Aukasiewicz logic in which only one propositional variable is considered. In this paper, we determine a topological duality for these algebras following well-known P. Halmos' and H. Priestley's dualities.
引用
收藏
页码:7119 / 7123
页数:5
相关论文
共 50 条
  • [41] Frames and MV-algebras
    Belluce L.P.
    Di Nola A.
    Studia Logica, 2005, 81 (3) : 357 - 385
  • [42] On product MV-algebras
    Jakubík, J
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2002, 52 (04) : 797 - 810
  • [43] On Product MV-Algebras
    Ján Jakubík
    Czechoslovak Mathematical Journal, 2002, 52 : 797 - 810
  • [44] Implication in MV-algebras
    Chajda, I
    Halas, R
    Kühr, J
    ALGEBRA UNIVERSALIS, 2005, 52 (04) : 377 - 382
  • [45] On free MV-algebras
    Jakubík, J
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2003, 53 (02) : 311 - 317
  • [46] Similarity MV-algebras
    Gerla, B
    Leustean, I
    FUNDAMENTA INFORMATICAE, 2006, 69 (03) : 287 - 300
  • [47] Projective MV-algebras
    Di Nola, Antonio
    Grigolia, Revaz
    Lettieri, Ada
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2008, 47 (03) : 323 - 332
  • [48] On archimedean MV-algebras
    Ján Jakubík
    Czechoslovak Mathematical Journal, 1998, 48 : 575 - 582
  • [49] NORMALIZATION OF MV-ALGEBRAS
    Chajda, I.
    Halas, R.
    Kuehr, J.
    Vanzurova, A.
    MATHEMATICA BOHEMICA, 2005, 130 (03): : 283 - 300
  • [50] The Writing of the MV-algebras
    C. C. Chang
    Studia Logica, 1998, 61 (1) : 3 - 6