A topological duality for monadic MV-algebras

被引:6
|
作者
Figallo-Orellano, Aldo [1 ]
机构
[1] Univ Nacl Sur, Dept Matemat, Buenos Aires, DF, Argentina
关键词
Compendex;
D O I
10.1007/s00500-016-2255-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Monadic MV-algebras are an algebraic model of first-order infinite-valued Aukasiewicz logic in which only one propositional variable is considered. In this paper, we determine a topological duality for these algebras following well-known P. Halmos' and H. Priestley's dualities.
引用
收藏
页码:7119 / 7123
页数:5
相关论文
共 50 条
  • [31] Topological locally finite MV-algebras and Riemann surfaces
    Kukkurainen, Paavo
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2007, 32 (01) : 215 - 222
  • [32] Extending Stone duality to multisets and locally finite MV-algebras
    Cignoli, R
    Dubuc, EJ
    Mundici, D
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2004, 189 (1-3) : 37 - 59
  • [33] STONE DUALITY TYPE THEOREMS FOR MV-ALGEBRAS WITH INTERNAL STATE
    Di Nola, A.
    Dvurecenskij, A.
    Lettieri, A.
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (01) : 327 - 342
  • [34] Some Results on Quasi MV-Algebras and Perfect Quasi MV-Algebras
    Dvurecenskij, Anatolij
    Zahiri, Omid
    STUDIA LOGICA, 2025,
  • [35] Hyperfinite MV-algebras
    Belluce, L. P.
    Di Nola, A.
    Lenzi, G.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2013, 217 (07) : 1208 - 1223
  • [36] Weak MV-algebras
    Halas, Radomir
    Plojhar, Lubos
    MATHEMATICA SLOVACA, 2008, 58 (03) : 253 - 262
  • [37] Vectorial MV-algebras
    Noje, D
    Bede, B
    SOFT COMPUTING, 2003, 7 (04) : 258 - 262
  • [38] Strict MV-algebras
    Ambrosio, R
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 237 (01) : 320 - 326
  • [39] On archimedean MV-algebras
    Jakubík, J
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1998, 48 (03) : 575 - 582
  • [40] POLYADIC MV-ALGEBRAS
    SCHWARTZ, D
    ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1980, 26 (06): : 561 - 564