Harmonic spinors on the Davis hyperbolic 4-manifold

被引:2
|
作者
Ratcliffe, John G. [1 ]
Ruberman, Daniel [2 ]
Tschantz, Steven T. [1 ]
机构
[1] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
[2] Brandeis Univ, Dept Math, Waltham, MA 02445 USA
关键词
Hyperbolic; 4-manifold; Dirac operator; harmonic spinor; Davis manifold; INDEX;
D O I
10.1142/S1793525320500247
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we use the G-spin theorem to show that the Davis hyperbolic 4-manifold admits harmonic spinors. This is the first example of a closed hyperbolic 4-manifold that admits harmonic spinors. We also explicitly describe the spinor bundle of a spin hyperbolic 2- or 4-manifold and show how to calculated the subtle sign terms in the G-spin theorem for an isometry, with isolated fixed points, of a closed spin hyperbolic 2- or 4-manifold.
引用
收藏
页码:699 / 737
页数:39
相关论文
共 50 条
  • [21] THE ALGEBRAIC TOPOLOGY OF 4-MANIFOLD MULTISECTIONS
    Moussard, Delphine
    Schirmer, Trenton
    PACIFIC JOURNAL OF MATHEMATICS, 2023, 327 (01) : 139 - 166
  • [22] HOMOLOGY OF A 4-MANIFOLD WITH A GIVEN BOUNDARY
    KNOBLAUCH, T
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (06): : A604 - A604
  • [23] The suspension of a 4-manifold and its applications
    So, Tseleung
    Theriault, Stephen
    ISRAEL JOURNAL OF MATHEMATICS, 2025, 265 (01) : 115 - 151
  • [24] An open 4-manifold having no instanton
    Masaki Tsukamoto
    Annals of Global Analysis and Geometry, 2011, 40 : 251 - 286
  • [25] Local properties of self-dual harmonic 2-forms on a 4-manifold
    Honda, K
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2004, 577 : 105 - 116
  • [26] Critical Metrics of the Schouten Functional on a 4-manifold
    Zhang, L.F.
    IAENG International Journal of Computer Science, 2023, 50 (01)
  • [27] The G2 sphere of a 4-manifold
    R. Albuquerque
    I. M. C. Salavessa
    Monatshefte für Mathematik, 2009, 158 : 335 - 348
  • [28] THE SPACE OF HYPERKAHLER METRICS ON A 4-MANIFOLD WITH BOUNDARY
    Fine, Joel
    Lotay, Jason D.
    Singer, Michael
    FORUM OF MATHEMATICS SIGMA, 2017, 5
  • [29] ON A 4-MANIFOLD HOMOLOGY EQUIVALENT TO A BOUQUET OF SURFACES
    KAWAUCHI, A
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 262 (01) : 95 - 112
  • [30] Compactification of a class of conformally flat 4-manifold
    Chang, SYA
    Qing, J
    Yang, PC
    INVENTIONES MATHEMATICAE, 2000, 142 (01) : 65 - 93