The optimal activation of plastic aligner for canine distal movement: a three-dimensional finite element analysis

被引:4
|
作者
Li, Ruohan [1 ]
She, Wenting [1 ]
Luo, Yu [1 ]
Wang, Juan [1 ]
Peng, Youjian [1 ]
Ye, Qingsong [1 ,2 ]
机构
[1] Wuhan Univ, Renmin Hosp, Wuhan, Hubei, Peoples R China
[2] Massachusetts Gen Hosp, Harvard Sch Dent Med, Boston, MA USA
关键词
Plastic aligner; Activation; Tooth movement; Stress; Strain; ORTHODONTIC TOOTH MOVEMENT; PERIODONTAL-LIGAMENT; CENTRAL INCISOR; INITIAL FORCE; PRESSURE; ROOT;
D O I
10.1007/s10266-021-00663-8
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
This study aimed to investigate the optimal activation of plastic aligner for the canine distal movement by combining the stress and strain of periodontal ligament. Computer-aided design models of the upper canine, periodontal ligament, alveolar bone, and plastic aligner were constructed. The stresses and strains of periodontal ligament were acquired by fitting plastic aligner on the canine, which will cause the canine distal-direction movement. The activation of plastic aligner was set into 12 groups, including 0.050, 0.100, 0.125, 0.150, 0.175, 0.200, 0.225, 0.250, 0.275, 0.300, 0.350, and 0.400 mm. Assuming the volume-averaged hydrostatic stress (VAHS) ranging from 4.7 to 16 kPa to be the optimal stress, and an average strain no less than 0.3 to be the optimal strain. The optimal activation of plastic aligner was acquired based on the optimal stress and average strain. As the activation increased, the stress and strain of periodontal ligament increased visibly. The degree of activation of plastic aligner was nonlinearly and positively related to VAHS and average strain. According to the fitted curves, the activation corresponding to the optimal stress was 0.07-0.24 mm and the activation was not less than 0.21 mm based on the optimal strain. The optimal activation of plastic aligner for the canine distal movement was 0.21-0.24 mm in this study. The degree of activation affects the force system of orthodontic tooth movement, and it should be taken into consideration to obtain healthy and efficient tooth movement. The activation with 0.21-0.24 mm seems optimal for orthodontic tooth movement in the plastic aligner system in this study.
引用
收藏
页码:305 / 312
页数:8
相关论文
共 50 条
  • [21] Effects of different tooth movement patterns and aligner thicknesses on maxillary arch expansion with clear aligners: a three-dimensional finite element study
    Li, Na
    Wang, ChunJuan
    Yang, Min
    Chen, DingGen
    Tang, MingYuan
    Li, DaoKun
    Qiu, ShengLei
    Chen, Qi
    Feng, Yi
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2024, 12
  • [22] Three-Dimensional Finite Element Analysis of Steel Silo
    Chen, Changbing
    Liang, Xingpei
    Bi, Shouyi
    FRONTIERS OF GREEN BUILDING, MATERIALS AND CIVIL ENGINEERING, PTS 1-8, 2011, 71-78 : 4031 - +
  • [23] On the three-dimensional finite element analysis of dovetail attachments
    Beisheim, JR
    Sinclair, GB
    JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 2003, 125 (02): : 372 - 379
  • [24] Finite element analysis of three-dimensional RTM process
    Deb, MK
    Reddy, MP
    Mayavaram, RS
    Baumann, CE
    CONFERENCE PROCEEDINGS AT ANTEC '98: PLASTICS ON MY MIND, VOLS I-3: VOL I; PROCESSING, VOL II; SPECIAL AREAS, VOL III; MATERIALS, 1998, 44 : 2322 - 2326
  • [25] Three-dimensional finite-element analysis of maxillary
    Yu, Hyung S.
    Baik, Hyoung S.
    Sung, Sang J.
    Kim, Kee D.
    Cho, Young S.
    EUROPEAN JOURNAL OF ORTHODONTICS, 2007, 29 (02) : 118 - 125
  • [26] Three-dimensional finite element analysis of ankle arthrodesis
    Xie, Qiang
    Liu, Wenyi
    Wang, Zhihui
    Gao, Yunfeng
    Xue, Xinxin
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2017, 10 (08): : 11749 - 11758
  • [27] Three-dimensional finite element analysis for piezoelectric transformer
    Joo, HW
    Lee, CH
    Jung, HK
    APPLIED ELECTROMAGNETICS (III), 2001, 10 : 115 - 118
  • [28] Three-dimensional finite element analysis of deep excavations
    Ou, CY
    Chiou, DC
    Wu, TS
    JOURNAL OF GEOTECHNICAL ENGINEERING-ASCE, 1996, 122 (05): : 337 - 345
  • [29] Three-dimensional finite element analysis of the human ACL
    Haghpanahi, M.
    Jalayer, F.
    PROCEEDINGS OF THE 1ST WSEAS INTERNATIONAL CONFERENCE ON BIOMEDICAL ELECTRONICS AND BIOMEDICAL INFORMATICS, 2008, : 134 - +
  • [30] Three-dimensional finite element analysis of lined tunnels
    Augarde, CE
    Burd, HJ
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2001, 25 (03) : 243 - 262