The simplicial volume of hyperbolic manifolds with geodesic boundary

被引:10
|
作者
Frigerio, Roberto [1 ]
Pagliantini, Cristina [1 ]
机构
[1] Univ Pisa, Dipartimento Matemat L Tonelli, I-56127 Pisa, Italy
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2010年 / 10卷 / 02期
关键词
LOCALLY SYMMETRIC-SPACES; SINGULAR HOMOLOGY; MAXIMAL VOLUME;
D O I
10.2140/agt.2010.10.979
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let n >= 3, let M be an orientable complete finite-volume hyperbolic n-manifold with compact (possibly empty) geodesic boundary, and let Vol(M) and parallel to M parallel to be the Riemannian volume and the simplicial volume of M. A celebrated result by Gromov and Thurston states that if partial derivative M = empty set then Vol(M)/parallel to M parallel to = upsilon(n), where upsilon(n) is the volume of the regular ideal geodesic n-simplex in hyperbolic n-space. On the contrary, Jungreis and Kuessner proved that if partial derivative M = empty set Vol(M)/parallel to M parallel to = upsilon(n). We prove here that for every eta > 0 there exists k > 0 ( only depending on eta and n) such that if such that if Vol(partial derivative M)/Vol(M) <= k, then Vol(M)/parallel to M parallel to >= upsilon(n) - eta. As a consequence we show that for every eta > 0 there exists a compact orientable hyperbolic n-manifold M with nonempty geodesic boundary such that Vol(M)/parallel to M parallel to >= upsilon(n) - eta. Our argument also works in the case of empty boundary, thus providing a somewhat new proof of the proportionality principle for noncompact finite-volume hyperbolic n-manifolds without geodesic boundary.
引用
收藏
页码:979 / 1001
页数:23
相关论文
共 50 条
  • [31] Hyperbolic convex cores and simplicial volume
    Storm, Peter A.
    [J]. DUKE MATHEMATICAL JOURNAL, 2007, 140 (02) : 281 - 319
  • [32] Two-sided bounds for the complexity of hyperbolic three-manifolds with geodesic boundary
    A. Yu. Vesnin
    E. A. Fominykh
    [J]. Proceedings of the Steklov Institute of Mathematics, 2014, 286 : 55 - 64
  • [33] Two-Sided Bounds for the Complexity of Hyperbolic Three-Manifolds with Geodesic Boundary
    Vesnin, A. Yu.
    Fominykh, E. A.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2014, 286 (01) : 55 - 64
  • [34] Stable complexity and simplicial volume of manifolds
    Francaviglia, Stefano
    Frigerio, Roberto
    Martelli, Bruno
    [J]. JOURNAL OF TOPOLOGY, 2012, 5 (04) : 977 - 1010
  • [35] GEODESIC FLOW FROM MANIFOLDS OF HYPERBOLIC TYPE
    KLINGENBERG, W
    [J]. INVENTIONES MATHEMATICAE, 1971, 14 (01) : 63 - +
  • [36] POWER SPECTRUM OF THE GEODESIC FLOW ON HYPERBOLIC MANIFOLDS
    Dyatlov, Semyon
    Faure, Frederic
    Guillarmou, Colin
    [J]. ANALYSIS & PDE, 2015, 8 (04): : 923 - 1000
  • [37] GEODESIC-FLOW ON MANIFOLDS OF HYPERBOLIC TYPE
    CHRISTOPHORIDOU, C
    [J]. ARCHIV DER MATHEMATIK, 1988, 51 (03) : 247 - 254
  • [38] Geodesic planes in hyperbolic 3-manifolds
    Curtis T. McMullen
    Amir Mohammadi
    Hee Oh
    [J]. Inventiones mathematicae, 2017, 209 : 425 - 461
  • [39] Geodesic planes in hyperbolic 3-manifolds
    McMullen, Curtis T.
    Mohammadi, Amir
    Oh, Hee
    [J]. INVENTIONES MATHEMATICAE, 2017, 209 (02) : 425 - 461
  • [40] EUCLIDEAN STRUCTURES ON SIMPLICIAL SURFACES AND HYPERBOLIC VOLUME
    RIVIN, I
    [J]. ANNALS OF MATHEMATICS, 1994, 139 (03) : 553 - 580