Two-Sided Bounds for the Complexity of Hyperbolic Three-Manifolds with Geodesic Boundary

被引:3
|
作者
Vesnin, A. Yu. [1 ,2 ]
Fominykh, E. A. [3 ,4 ]
机构
[1] Russian Acad Sci, Sobolev Inst Math, Siberian Branch, Novosibirsk 630090, Russia
[2] Omsk State Tech Univ, Omsk 644050, Russia
[3] Chelyabinsk State Univ, Chelyabinsk 454001, Russia
[4] Russian Acad Sci, Krasovskii Inst Math & Mech, Ural Branch, Ekaterinburg 620990, Russia
基金
俄罗斯基础研究基金会;
关键词
MINIMAL TRIANGULATIONS; EXACT VALUES; COVERINGS; MANIFOLDS; FAMILY;
D O I
10.1134/S0081543814060042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct an infinite family of hyperbolic three-manifolds with geodesic boundary that generalize the Thurston and Paoluzzi-Zimmermann manifolds. For the manifolds of this family, we present two-sided bounds for their complexity.
引用
收藏
页码:55 / 64
页数:10
相关论文
共 50 条
  • [1] Two-sided bounds for the complexity of hyperbolic three-manifolds with geodesic boundary
    A. Yu. Vesnin
    E. A. Fominykh
    [J]. Proceedings of the Steklov Institute of Mathematics, 2014, 286 : 55 - 64
  • [2] TWO-SIDED ASYMPTOTIC BOUNDS FOR THE COMPLEXITY OF SOME CLOSED HYPERBOLIC THREE-MANIFOLDS
    Matveev, Sergei
    Petronio, Carlo
    Vesnin, Andrei
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 86 (02) : 205 - 219
  • [3] Two-sided complexity bounds for Lobell manifolds
    Vesnin, A. Yu.
    Matveev, S. V.
    Petronio, C.
    [J]. DOKLADY MATHEMATICS, 2007, 76 (02) : 689 - 691
  • [4] Two-sided complexity bounds for Löbell manifolds
    A. Yu. Vesnin
    S. V. Matveev
    C. Petronio
    [J]. Doklady Mathematics, 2007, 76
  • [5] On complexity of three-dimensional hyperbolic manifolds with geodesic boundary
    Vesnin, A. Yu.
    Fominykh, E. A.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2012, 53 (04) : 625 - 634
  • [6] On complexity of three-dimensional hyperbolic manifolds with geodesic boundary
    A. Yu. Vesnin
    E. A. Fominykh
    [J]. Siberian Mathematical Journal, 2012, 53 : 625 - 634
  • [7] Remarks on Manifolds with Two-Sided Curvature Bounds
    Kapovitch, Vitali
    Lytchak, Alexander
    [J]. ANALYSIS AND GEOMETRY IN METRIC SPACES, 2021, 9 (01): : 53 - 64
  • [8] Lower bounds for volumes and orthospectra of hyperbolic manifolds with geodesic boundary
    Belolipetsky, Mikhail
    Bridgeman, MaARTIN
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2022, 22 (03): : 1255 - 1272
  • [9] Complexity of geometric three-manifolds
    Martelli, B
    Petronio, C
    [J]. GEOMETRIAE DEDICATA, 2004, 108 (01) : 15 - 69
  • [10] Complexity of Geometric Three-manifolds
    Bruno Martelli
    Carlo Petronio
    [J]. Geometriae Dedicata, 2004, 108 : 15 - 69