Convergence of an iterative algorithm for solving Hamilton-Jacobi type equations

被引:0
|
作者
Markman, J [1 ]
Katz, IN [1 ]
机构
[1] Washington Univ, Dept Syst Sci & Math, St Louis, MO 63130 USA
关键词
Hamilton-Jacobi equations; convergence; optimal control;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Solutions of the optimal control and H-infinity-control problems for nonlinear affine systems can be found by solving Hamilton-Jacobi equations. However, these first order nonlinear partial differential equations can, in general, not be solved analytically. This paper studies the rate of convergence of an iterative algorithm which solves these equations numerically for points near the origin. It is shown that the procedure converges to the stabilizing solution exponentially with respect to the iteration variable. Illustrative examples are presented which confirm the theoretical rate of convergence.
引用
收藏
页码:77 / 103
页数:27
相关论文
共 50 条
  • [1] An iterative algorithm for solving Hamilton-Jacobi type equations
    Markman, J
    Katz, IN
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (01): : 312 - 329
  • [3] A higher order frozen Jacobian iterative method for solving Hamilton-Jacobi equations
    Alzahrani, Ebraheem O.
    Al-Aidarous, Eman S.
    Younas, Arshad M. M.
    Ahmad, Fayyaz
    Ahmad, Shamshad
    Ahmad, Shahid
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (12): : 6210 - 6227
  • [4] On the rate of convergence in homogenization of Hamilton-Jacobi equations
    Capuzzo-Dolcetta, I
    Ishii, H
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2001, 50 (03) : 1113 - 1129
  • [5] Exponential convergence of solutions for random Hamilton-Jacobi equations
    Iturriaga, Renato
    Khanin, Konstantin
    Zhang, Ke
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2020, 8 (03): : 544 - 579
  • [7] Hamilton-Jacobi method for solving ordinary differential equations
    Faculty of Science, Beijing Institute of Technology, Beijing 100081, China
    Chin. Phys., 2006, 8 (1662-1664):
  • [8] Hamilton-Jacobi method for solving ordinary differential equations
    Mei Feng-Xiang
    Wu Hui-Bin
    Zhang Yong-Fa
    CHINESE PHYSICS, 2006, 15 (08): : 1662 - 1664
  • [9] Approximate iterative solutions of Hamilton-Jacobi equations for nonlinear systems
    Aliyu, M. D. S.
    IFAC JOURNAL OF SYSTEMS AND CONTROL, 2020, 14
  • [10] ON THE RATES OF CONVERGENCE OF FULLY DISCRETE SOLUTIONS OF HAMILTON-JACOBI EQUATIONS
    GONZALEZ, RLV
    TIDBALL, MM
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 314 (06): : 479 - 482