On the rate of convergence in homogenization of Hamilton-Jacobi equations

被引:0
|
作者
Capuzzo-Dolcetta, I
Ishii, H
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
[2] Waseda Univ, Dept Math, Shinjuku Ku, Tokyo 1698555, Japan
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
consider the homogenization problem for fully nonlinear first order scalar partial differential equations of Hamilton-Jacobi type such as u(epsilon)(x) + H (x, x/epsilon, Du(epsilon) (x)) = 0, x is an element of R-N, E where epsilon is a small positive parameter and H is a periodic function of the second variable. Our main results (Theorems 1.1 and 1.2 below) give estimates on the rate of convergence of uepsilon to the solution u of the homogenized problem u(x) + (H) over bar (x, Du (x)) = 0, x is an element of R-N.
引用
收藏
页码:1113 / 1129
页数:17
相关论文
共 50 条
  • [2] OPTIMAL RATE OF CONVERGENCE IN PERIODIC HOMOGENIZATION OF VISCOUS HAMILTON-JACOBI EQUATIONS
    Qian, Jianliang
    Sprekeler, Timo
    Tran, Hung V.
    Yu, Yifeng
    Multiscale Modeling and Simulation, 2024, 22 (04): : 1558 - 1584
  • [3] ON THE RATE OF CONVERGENCE IN HOMOGENIZATION OF TIME-FRACTIONAL HAMILTON-JACOBI EQUATIONS
    Mitake, Hiroyoshi
    Sato, Shoichi
    arXiv, 2023,
  • [4] OPTIMAL CONVERGENCE RATE FOR PERIODIC HOMOGENIZATION OF CONVEX HAMILTON-JACOBI EQUATIONS
    Tran, Hung V.
    Yu, Yifeng
    arXiv, 2021,
  • [5] On the rate of convergence in homogenization of time-fractional Hamilton-Jacobi equations
    Mitake, Hiroyoshi
    Sato, Shoichi
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 30 (05):
  • [6] Rate of Convergence in Periodic Homogenization of Hamilton-Jacobi Equations: The Convex Setting
    Mitake, Hiroyoshi
    Iran, Hung, V
    Yu, Yifeng
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 233 (02) : 901 - 934
  • [7] Rate of convergence in periodic homogenization for convex Hamilton-Jacobi equations with multiscales
    Han, Yuxi
    Jang, Jiwoong
    NONLINEARITY, 2023, 36 (10) : 5279 - 5297
  • [8] Rate of convergence for periodic homogenization of convex Hamilton-Jacobi equations in one dimension
    Tu, Son N. T.
    ASYMPTOTIC ANALYSIS, 2021, 121 (02) : 171 - 194
  • [9] Homogenization of pathwise Hamilton-Jacobi equations
    Seeger, Benjamin
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 110 : 1 - 31
  • [10] Homogenization for stochastic Hamilton-Jacobi equations
    Rezakhanlou, F
    Tarver, JE
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 151 (04) : 277 - 309