On the rate of convergence in homogenization of Hamilton-Jacobi equations

被引:0
|
作者
Capuzzo-Dolcetta, I
Ishii, H
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
[2] Waseda Univ, Dept Math, Shinjuku Ku, Tokyo 1698555, Japan
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
consider the homogenization problem for fully nonlinear first order scalar partial differential equations of Hamilton-Jacobi type such as u(epsilon)(x) + H (x, x/epsilon, Du(epsilon) (x)) = 0, x is an element of R-N, E where epsilon is a small positive parameter and H is a periodic function of the second variable. Our main results (Theorems 1.1 and 1.2 below) give estimates on the rate of convergence of uepsilon to the solution u of the homogenized problem u(x) + (H) over bar (x, Du (x)) = 0, x is an element of R-N.
引用
收藏
页码:1113 / 1129
页数:17
相关论文
共 50 条