consider the homogenization problem for fully nonlinear first order scalar partial differential equations of Hamilton-Jacobi type such as u(epsilon)(x) + H (x, x/epsilon, Du(epsilon) (x)) = 0, x is an element of R-N, E where epsilon is a small positive parameter and H is a periodic function of the second variable. Our main results (Theorems 1.1 and 1.2 below) give estimates on the rate of convergence of uepsilon to the solution u of the homogenized problem u(x) + (H) over bar (x, Du (x)) = 0, x is an element of R-N.
机构:
Univ Paris 09, CEREMADE, PSL Res Univ, Pl Marechal Lattre de Tassigny, F-75016 Paris, FranceUniv Paris 09, CEREMADE, PSL Res Univ, Pl Marechal Lattre de Tassigny, F-75016 Paris, France
机构:
Univ Paris Cite, F-75006 Paris, France
Sorbonne Univ, Lab Jacques Louis Lions, LJLL, CNRS, F-75006 Paris, FranceUniv Paris Cite, F-75006 Paris, France
Achdou, Yves
Le Bris, Claude
论文数: 0引用数: 0
h-index: 0
机构:
Ecole Ponts, Marne La Vallee, France
INRIA, Marne La Vallee, FranceUniv Paris Cite, F-75006 Paris, France