A statistical framework for biomarker discovery in metabolomic time course data

被引:34
|
作者
Berk, Maurice [1 ]
Ebbels, Timothy [2 ]
Montana, Giovanni [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, Stat Sect, London SW7 2AZ, England
[2] Univ London Imperial Coll Sci Technol & Med, Dept Surg & Canc, London SW7 2AZ, England
基金
英国惠康基金;
关键词
HYDRAZINE TOXICITY; METABONOMICS;
D O I
10.1093/bioinformatics/btr289
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Metabolomics is the study of the complement of small molecule metabolites in cells, biofluids and tissues. Many metabolomic experiments are designed to compare changes observed over time under two experimental conditions or groups (e. g. a control and drug-treated group) with the goal of identifying discriminatory metabolites or biomarkers that characterize each condition. A common study design consists of repeated measurements taken on each experimental unit thus producing time courses of all metabolites. We describe a statistical framework for estimating time-varying metabolic profiles and their within-group variability and for detecting between-group differences. Specifically, we propose (i) a smoothing splines mixed effects (SME) model that treats each longitudinal measurement as a smooth function of time and (ii) an associated functional test statistic. Statistical significance is assessed by a non-parametric bootstrap procedure. Results: The methodology has been extensively evaluated using simulated data and has been applied to real nuclear magnetic resonance spectroscopy data collected in a preclinical toxicology study as part of a larger project lead by the COMET (Consortium for Metabonomic Toxicology). Our findings are compatible with the previously published studies.
引用
收藏
页码:1979 / 1985
页数:7
相关论文
共 50 条
  • [31] Bayesian Biomarker Discovery for RNAseq Data
    Pour, Ali Foroughi
    Dalton, Lori A.
    ACM-BCB'18: PROCEEDINGS OF THE 2018 ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2018, : 603 - 604
  • [32] NOREVA: enhanced normalization and evaluation of time-course and multi-class metabolomic data
    Yang, Qingxia
    Wang, Yunxia
    Zhang, Ying
    Li, Fengcheng
    Xia, Weiqi
    Zhou, Ying
    Qiu, Yunqing
    Li, Honglin
    Zhu, Feng
    NUCLEIC ACIDS RESEARCH, 2020, 48 (W1) : W436 - W448
  • [33] A hybrid and exploratory approach to knowledge discovery in metabolomic data
    Grissa, Dhouha
    Comte, Blandine
    Petera, Melanie
    Pujos-Guillot, Estelle
    Napoli, Amedeo
    DISCRETE APPLIED MATHEMATICS, 2020, 273 (273) : 103 - 116
  • [34] An integrated space–time framework for linkage discovery of big survey data
    Xinyue Ye
    Xiang Lian
    Hongwei Xu
    Jiaxin Du
    Shuming Bao
    Spatial Information Research, 2024, 32 : 195 - 206
  • [35] Early Predictive Metabolomic Biomarker Discovery Prior to the Onset of Pre-Eclampsia.
    Kenny, Louise
    Broadhurst, David
    Brown, Marie
    Dunn, Warwick
    North, Robyn
    Kell, Douglas
    Baker, Philip
    HYPERTENSION IN PREGNANCY, 2008, 27 (04) : 634 - 634
  • [36] Discovery and validation of an NMR-based metabolomic profile in urine as TB biomarker
    José Luis Izquierdo-Garcia
    Patricia Comella-del-Barrio
    Ramón Campos-Olivas
    Raquel Villar-Hernández
    Cristina Prat-Aymerich
    Maria Luiza De Souza-Galvão
    Maria Angeles Jiménez-Fuentes
    Juan Ruiz-Manzano
    Zoran Stojanovic
    Adela González
    Mar Serra-Vidal
    Esther García-García
    Beatriz Muriel-Moreno
    Joan Pau Millet
    Israel Molina-Pinargote
    Xavier Casas
    Javier Santiago
    Fina Sabriá
    Carmen Martos
    Christian Herzmann
    Jesús Ruiz-Cabello
    José Domínguez
    Scientific Reports, 10
  • [37] An Approach to Biomarker Discovery of Cannabis Use Utilizing Proteomic, Metabolomic, and Lipidomic Analyses
    Hinckley, Jesse D.
    Saba, Laura
    Raymond, Kristen
    Bartels, Karsten
    Klawitter, Jost
    Christians, Uwe
    Hopfer, Christian
    CANNABIS AND CANNABINOID RESEARCH, 2022, 7 (01) : 65 - 77
  • [38] Biomarker Discovery for Preeclampsia Using Newly Established Global Metabolomic Analysis.
    Kurosawa, Yasuhiro
    Saigusa, Daisuke
    Wagata, Maiko
    Saito, Masatoshi
    Yaegashi, Nobuo
    Sugawara, Junichi
    REPRODUCTIVE SCIENCES, 2017, 24 : 155A - 156A
  • [39] Current Status of Metabolomic Biomarker Discovery: Impact of Study Design and Demographic Characteristics
    Tolstikov, Vladimir
    Moser, A. James
    Sarangarajan, Rangaprasad
    Narain, Niven R.
    Kiebish, Michael A.
    METABOLITES, 2020, 10 (06)
  • [40] Data-Driven Kidney Transplant Phenotyping as a Histology-Independent Framework for Biomarker Discovery
    Buscher, Konrad
    Heitplatz, Barbara
    van Marck, Veerle
    Song, Jian
    Loismann, Sophie
    Rixen, Rebecca
    Huechtmann, Birte
    Kurian, Sunil
    Ehinger, Erik
    Wolf, Dennis
    Ley, Klaus
    Pavenstaedt, Hermann
    Reuter, Stefan
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2021, 32 (08): : 1933 - 1945