A statistical framework for biomarker discovery in metabolomic time course data

被引:34
|
作者
Berk, Maurice [1 ]
Ebbels, Timothy [2 ]
Montana, Giovanni [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, Stat Sect, London SW7 2AZ, England
[2] Univ London Imperial Coll Sci Technol & Med, Dept Surg & Canc, London SW7 2AZ, England
基金
英国惠康基金;
关键词
HYDRAZINE TOXICITY; METABONOMICS;
D O I
10.1093/bioinformatics/btr289
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Metabolomics is the study of the complement of small molecule metabolites in cells, biofluids and tissues. Many metabolomic experiments are designed to compare changes observed over time under two experimental conditions or groups (e. g. a control and drug-treated group) with the goal of identifying discriminatory metabolites or biomarkers that characterize each condition. A common study design consists of repeated measurements taken on each experimental unit thus producing time courses of all metabolites. We describe a statistical framework for estimating time-varying metabolic profiles and their within-group variability and for detecting between-group differences. Specifically, we propose (i) a smoothing splines mixed effects (SME) model that treats each longitudinal measurement as a smooth function of time and (ii) an associated functional test statistic. Statistical significance is assessed by a non-parametric bootstrap procedure. Results: The methodology has been extensively evaluated using simulated data and has been applied to real nuclear magnetic resonance spectroscopy data collected in a preclinical toxicology study as part of a larger project lead by the COMET (Consortium for Metabonomic Toxicology). Our findings are compatible with the previously published studies.
引用
收藏
页码:1979 / 1985
页数:7
相关论文
共 50 条
  • [21] Data Mining for Biomarker Discovery
    Bacardit, Jaume
    INTERFACES, 2014, 44 (03) : 346 - 346
  • [22] Statistical methods for analysis of time course gene expression data
    Li, HZ
    Luan, YH
    Hong, FX
    Li, YJ
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2002, 7 : A90 - A98
  • [23] Metabolite biomarker discovery for pancreatic neuroendocrine tumors using metabolomic approach
    Jannin, A.
    Dessein, A. F.
    Dabo, S.
    Descat, A.
    Vantyghem, M. C.
    Cardot-Bauters, C.
    Chevalier, B.
    El Amrani, M.
    Marciniak, C.
    Pattou, F.
    Do, Cao C.
    Coppin, L.
    JOURNAL OF NEUROENDOCRINOLOGY, 2024, 36 : 156 - 156
  • [24] Metabolomic profiling of serum alterations and biomarker discovery in feline hepatic liposis
    Wang, Xingbo
    Xu, Ruru
    Yan, Weizhe
    Wang, Kexin
    Wang, Xichun
    Feng, Shibin
    Zhao, Chang
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [25] Metabolomic Characterization of Hepatocellular Carcinoma in Patients with Liver Cirrhosis for Biomarker Discovery
    Di Poto, Cristina
    Ferrarini, Alessia
    Zhao, Yi
    Varghese, Rency S.
    Tu, Chao
    Zuo, Yiming
    Wang, Minkun
    Ranjbar, Mohammad R. Nezami
    Luo, Yue
    Zhang, Chi
    Desai, Chirag S.
    Shetty, Kirti
    Tadesse, Mahlet G.
    Ressom, Habtom W.
    CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2017, 26 (05) : 675 - 683
  • [26] Optimising Extracellular Vesicle Metabolomic Methodology for Prostate Cancer Biomarker Discovery
    Hamed, Mahmoud Assem
    Wasinger, Valerie
    Wang, Qi
    Biazik, Joanna
    Graham, Peter
    Malouf, David
    Bucci, Joseph
    Li, Yong
    METABOLITES, 2024, 14 (07)
  • [27] Bladder Cancer Biomarker Discovery Using Global Metabolomic Profiling of Urine
    Wittmann, Bryan M.
    Stirdivant, Steven M.
    Mitchell, Matthew W.
    Wulff, Jacob E.
    McDunn, Jonathan E.
    Li, Zhen
    Dennis-Barrie, Aphrihl
    Neri, Bruce P.
    Milburn, Michael V.
    Lotan, Yair
    Wolfert, Robert L.
    PLOS ONE, 2014, 9 (12):
  • [28] Statistical methods and resources for biomarker discovery using metabolomics
    Najeha R. Anwardeen
    Ilhame Diboun
    Younes Mokrab
    Asma A. Althani
    Mohamed A. Elrayess
    BMC Bioinformatics, 24
  • [29] Statistical methods and resources for biomarker discovery using metabolomics
    Anwardeen, Najeha R.
    Diboun, Ilhame
    Mokrab, Younes
    Althani, Asma A.
    Elrayess, Mohamed A.
    BMC BIOINFORMATICS, 2023, 24 (01)
  • [30] Statistical Spectroscopic Tools for Biomarker Discovery and Systems Medicine
    Robinette, Steven L.
    Lindon, John C.
    Nicholson, Jeremy K.
    ANALYTICAL CHEMISTRY, 2013, 85 (11) : 5297 - 5303