Cooperative DynDE for Temporal Data Clustering

被引:0
|
作者
Georgieva, Kristina S.
Engelbrecht, Andries P.
机构
关键词
DIFFERENTIAL EVOLUTION; OPTIMIZATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Temporal data is common in real-world datasets. Clustering of such data allows for relationships between data patterns over time to be discovered. Differential evolution (DE) algorithms have previously been used to cluster temporal data. This paper proposes the cooperative data clustering dynamic DE algorithm (CDCDynDE), which is an adaptation to the data clustering dynamic DE (DCDynDE) algorithm where each population searches for a single cluster centroid. The paper applies the proposed algorithm to a variety of temporal datasets with different frequencies of change, severities of change, dataset dimensions and data migration types. The clustering results of the cooperative data clustering DynDE are compared against the original data clustering DynDE, the re-initialising data clustering DE and the standard data clustering DE. A statistical analysis of these results shows that the cooperative data clustering DynDE algorithm obtains better data clustering solutions to the other three algorithms despite changes in frequency, severity, dimension and data migration types.
引用
收藏
页码:437 / 444
页数:8
相关论文
共 50 条
  • [31] Visual interactive clustering and querying of spatio-temporal data
    Sourina, O
    Liu, DQ
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2005, VOL 4, PROCEEDINGS, 2005, 3483 : 968 - 977
  • [32] Clustering Temporal Gene Expression Data with Unequal Time Intervals
    Rueda, Luis
    Bari, Ataul
    [J]. 2007 2ND BIO-INSPIRED MODELS OF NETWORKS, INFORMATION AND COMPUTING SYSTEMS (BIONETICS), 2007, : 183 - +
  • [33] AliClu - Temporal sequence alignment for clustering longitudinal clinical data
    Kishan Rama
    Helena Canhão
    Alexandra M. Carvalho
    Susana Vinga
    [J]. BMC Medical Informatics and Decision Making, 19
  • [34] Clustering in Cooperative Networks
    Bash, Boulat A.
    Goeckel, Dennis
    Towsley, Don
    [J]. 2011 PROCEEDINGS IEEE INFOCOM, 2011, : 486 - 490
  • [35] AliClu - Temporal sequence alignment for clustering longitudinal clinical data
    Rama, Kishan
    Canhao, Helena
    Carvalho, Alexandra M.
    Vinga, Susana
    [J]. BMC MEDICAL INFORMATICS AND DECISION MAKING, 2019, 19 (01)
  • [36] An effective data clustering measure for temporal selection and projection queries
    Kim, JS
    Kim, MH
    [J]. DECISION SUPPORT SYSTEMS, 2000, 30 (01) : 33 - 50
  • [37] A variational Expectation-Maximization algorithm for temporal data clustering
    El Assaad, Hani
    Same, Allou
    Govaert, Gerard
    Aknin, Patrice
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 103 : 206 - 228
  • [38] A Density-Based Clustering of Spatio-Temporal Data
    Zaghlool, Ehab
    ElKaffas, Saleh
    Saad, Amani
    [J]. NEW CONTRIBUTIONS IN INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 2, 2015, 354 : 41 - 50
  • [39] Functional clustering methods for binary longitudinal data with temporal heterogeneity
    Sohn, Jinwon
    Jeong, Seonghyun
    Cho, Young Min
    Park, Taeyoung
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 185
  • [40] Functional distributional clustering using spatio-temporal data
    Venkatasubramaniam, A.
    Evers, L.
    Thakuriah, P.
    Ampountolas, K.
    [J]. JOURNAL OF APPLIED STATISTICS, 2023, 50 (04) : 909 - 926