Cooperative DynDE for Temporal Data Clustering

被引:0
|
作者
Georgieva, Kristina S.
Engelbrecht, Andries P.
机构
关键词
DIFFERENTIAL EVOLUTION; OPTIMIZATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Temporal data is common in real-world datasets. Clustering of such data allows for relationships between data patterns over time to be discovered. Differential evolution (DE) algorithms have previously been used to cluster temporal data. This paper proposes the cooperative data clustering dynamic DE algorithm (CDCDynDE), which is an adaptation to the data clustering dynamic DE (DCDynDE) algorithm where each population searches for a single cluster centroid. The paper applies the proposed algorithm to a variety of temporal datasets with different frequencies of change, severities of change, dataset dimensions and data migration types. The clustering results of the cooperative data clustering DynDE are compared against the original data clustering DynDE, the re-initialising data clustering DE and the standard data clustering DE. A statistical analysis of these results shows that the cooperative data clustering DynDE algorithm obtains better data clustering solutions to the other three algorithms despite changes in frequency, severity, dimension and data migration types.
引用
收藏
页码:437 / 444
页数:8
相关论文
共 50 条
  • [21] Incremental Spatio Temporal Clustering Application on Hotspot Data
    Sitanggang, I. S.
    Radiatun, N.
    Risal, A. A. Nur
    [J]. 2ND INTERNATIONAL CONFERENCE ON ENVIRONMENT AND FOREST CONSERVATION (ICEFC2019): ECOSYSTEM RESEARCH AND INNOVATION TO ACHIEVE SUSTAINABLE DEVELOPMENT GOALS, 2020, 528
  • [22] Clustering Data with Temporal Evolution: Application to Electrophysiological Signals
    Medina, Liliana A. S.
    Fred, Ana L. N.
    [J]. AGENTS AND ARTIFICIAL INTELLIGENCE, 2011, 129 : 101 - 115
  • [23] Evolutionary Robust Clustering Over Time for Temporal Data
    Zhao, Qi
    Yan, Bai
    Yang, Jian
    Shi, Yuhui
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (07) : 4334 - 4346
  • [24] Temporal Clustering of Motion Capture Data with Optimal Partitioning
    Yang, Yang
    Shum, Hubert P. H.
    Aslam, Nauman
    Zeng, Lanling
    [J]. PROCEEDINGS VRCAI 2016: 15TH ACM SIGGRAPH CONFERENCE ON VIRTUAL-REALITY CONTINUUM AND ITS APPLICATIONS IN INDUSTRY, 2016, : 479 - 482
  • [25] Spatio-Temporal Clustering of Road Network Data
    Cheng, Tao
    Anbaroglu, Berk
    [J]. ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, PT I, 2010, 6319 : 116 - 123
  • [26] Deep Spatiotemporal Clustering: A Temporal Clustering Approach for Multi-dimensional Climate Data
    Faruque, Omar
    Nji, Francis Ndikum
    Cham, Mostafa
    Salvi, Rohan Mandar
    Zheng, Xue
    Wang, Jianwu
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: APPLIED DATA SCIENCE AND DEMO TRACK, ECML PKDD 2023, PT VII, 2023, 14175 : 90 - 105
  • [27] Cooperative bare-bone particle swarm optimization for data clustering
    Bo Jiang
    Ning Wang
    [J]. Soft Computing, 2014, 18 : 1079 - 1091
  • [28] Data clustering via cooperative games: A novel approach and comparative study
    Coelho, Andre L. V.
    Sandes, Nelson C.
    [J]. INFORMATION SCIENCES, 2021, 545 : 791 - 812
  • [29] Cooperative bare-bone particle swarm optimization for data clustering
    Jiang, Bo
    Wang, Ning
    [J]. SOFT COMPUTING, 2014, 18 (06) : 1079 - 1091
  • [30] Clustering in Cooperative Networks
    Bash, Boulat A.
    Goeckel, Dennis
    Towsley, Don
    [J]. 2011 PROCEEDINGS IEEE INFOCOM, 2011, : 486 - 490