Estimation efficiency in a binary mixed-effects model setting

被引:22
|
作者
Neuhaus, JM [1 ]
Lesperance, ML [1 ]
机构
[1] UNIV VICTORIA,DEPT MATH & STAT,VICTORIA,BC V8W 3P4,CANADA
关键词
clustered data; conditional likelihood; semiparametric mixture model;
D O I
10.1093/biomet/83.2.441
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We investigate the efficiency of likelihood methods for estimating the regression parameters of mixed-effects logistic regression models. One approach uses a conditional likelihood which eliminates the random intercept terms. A second uses the likelihood generated from the marginal distribution of the data where the random intercepts are integrated out. Parametric estimates result from assuming a parametric form for the intercept distribution, whereas we obtain semiparametric estimates when the intercept distribution is left unspecified. We present an expression which shows that the asymptotic relative efficiency of conditional likelihood estimators relative to parametric estimators is a decreasing function of within-cluster covariate correlation. Simulation results show the same for the asymptotic relative efficiency of the semiparametric estimator. relative to the conditional. For fixed covariate correlation, the asymptotic relative efficiency of the parametric versus the conditional increases as cluster sizes increase. Example data further illustrate our findings.
引用
收藏
页码:441 / 446
页数:6
相关论文
共 50 条
  • [21] MUTUAL INDEPENDENCE IN A MIXED-EFFECTS MODEL - REPLY
    BEITLER, PJ
    LANDIS, JR
    [J]. BIOMETRICS, 1986, 42 (04) : 997 - 998
  • [22] Functional mixed-effects model for periodic data
    Qin, L
    Guo, WS
    [J]. BIOSTATISTICS, 2006, 7 (02) : 225 - 234
  • [23] A mixed-effects model for the analysis of circular measurements
    Wang, CM
    Lam, CT
    [J]. TECHNOMETRICS, 1997, 39 (02) : 119 - 126
  • [24] A MIXED-EFFECTS MODEL FOR CATEGORICAL-DATA
    BEITLER, PJ
    LANDIS, JR
    [J]. BIOMETRICS, 1985, 41 (04) : 991 - 1000
  • [25] HIERARCHICAL MIXED-EFFECTS MODEL FOR HIV DYNAMICS
    Lee, Yunjeong
    Hwang, Yoon-Gu
    Kwon, Hee-Dae
    Choi, Jun Yong
    Lee, Jeehyun
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2020, 80 (03) : 1290 - 1306
  • [26] A NONPARAMETRIC MIXED-EFFECTS MODEL FOR CANCER MORTALITY
    Tonda, Tetsuji
    Satoh, Kenichi
    Nakayama, Teruyuki
    Katanoda, Kota
    Sobue, Tomotaka
    Ohtaki, Megu
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2011, 53 (02) : 247 - 256
  • [27] A mixed-effects multinomial logistic regression model
    Hedeker, D
    [J]. STATISTICS IN MEDICINE, 2003, 22 (09) : 1433 - 1446
  • [28] Empirical Bayes estimation of random effects of a mixed-effects proportional odds Markov model for ordinal data
    Paule, Ines
    Girard, Pascal
    Tod, Michel
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2011, 104 (03) : 505 - 513
  • [29] Modeling Energy Expenditure Estimation in Occupational Context by Actigraphy: A Multi Regression Mixed-Effects Model
    Lucena, Andre
    Guedes, Joana
    Vaz, Mario
    Silva, Luiz
    Bustos, Denisse
    Souza, Erivaldo
    [J]. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (19)
  • [30] Generalized Linear Mixed-Effects Modeling Programs in R for Binary Outcomes
    Lee, Wooyeol
    Grimm, Kevin J.
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2018, 25 (05) : 824 - 828