A NONPARAMETRIC MIXED-EFFECTS MODEL FOR CANCER MORTALITY

被引:2
|
作者
Tonda, Tetsuji [1 ]
Satoh, Kenichi [1 ]
Nakayama, Teruyuki [2 ]
Katanoda, Kota [3 ]
Sobue, Tomotaka [3 ]
Ohtaki, Megu [1 ]
机构
[1] Hiroshima Univ, Res Inst Radiat Biol & Med, Minami Ku, Hiroshima 7348551, Japan
[2] Int Univ Hlth & Welf, Fac Nursing, Chuo Ku, Fukuoka 8100072, Japan
[3] Natl Canc Ctr, Res Ctr Canc Prevent & Screening, Chuo Ku, Tokyo 1040045, Japan
关键词
cancer mortality; kernel smoothing; local linear approximation; longitudinal count data; mixed-effects; Poisson regression; time-varying coefficient; VARYING-COEFFICIENT MODELS; LIKELIHOOD; REGRESSION; RADIATION; INFERENCE;
D O I
10.1111/j.1467-842X.2011.00615.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
There are several ways to handle within-subject correlations with a longitudinal discrete outcome, such as mortality. The most frequently used models are either marginal or random-effects types. This paper deals with a random-effects-based approach. We propose a nonparametric regression model having time-varying mixed effects for longitudinal cancer mortality data. The time-varying mixed effects in the proposed model are estimated by combining kernel-smoothing techniques and a growth-curve model. As an illustration based on real data, we apply the proposed method to a set of prefecture-specific data on mortality from large-bowel cancer in Japan.
引用
收藏
页码:247 / 256
页数:10
相关论文
共 50 条
  • [1] Nonparametric estimation of random-effects densities in linear mixed-effects model
    Comte, Fabienne
    Samson, Adeline
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2012, 24 (04) : 951 - 975
  • [2] Wavelet estimation in nonparametric linear mixed-effects errors in variables model
    Yalaz, Secil
    Kuran, Ozge
    [J]. SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2022, 40 (03): : 620 - 629
  • [3] Nonparametric estimations for the cumulative distribution functions of random effects in a linear mixed-effects model
    Thuy, Le Thi Hong
    Phuong, Cao Xuan
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (10) : 3659 - 3687
  • [4] Bayesian wavelet shrinkage for nonparametric mixed-effects models
    Huang, SY
    Lu, HHS
    [J]. STATISTICA SINICA, 2000, 10 (04) : 1021 - 1040
  • [5] Nonlinear nonparametric mixed-effects models for unsupervised classification
    Azzimonti, Laura
    Ieva, Francesca
    Paganoni, Anna Maria
    [J]. COMPUTATIONAL STATISTICS, 2013, 28 (04) : 1549 - 1570
  • [6] Nonlinear nonparametric mixed-effects models for unsupervised classification
    Laura Azzimonti
    Francesca Ieva
    Anna Maria Paganoni
    [J]. Computational Statistics, 2013, 28 : 1549 - 1570
  • [7] Spatial Nonparametric Mixed-Effects Model with Spatial-Varying Coefficients for Analysis of Populations
    David Ospina, Juan
    Acosta, Oscar
    Drean, Gael
    Cazoulat, Guillaume
    Simon, Antoine
    Carlos Correa, Juan
    Haigron, Pascal
    de Crevoisier, Renaud
    [J]. MACHINE LEARNING IN MEDICAL IMAGING, 2011, 7009 : 142 - +
  • [8] Mixed-effects model by projections
    Choi, Jaesung
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2016, 29 (07) : 1155 - 1163
  • [9] Disparities in Cervical Cancer Mortality Rates as Determined by the Longitudinal Hyperbolastic Mixed-Effects Type II Model
    Tabatabai, Mohammad A.
    Kengwoung-Keumo, Jean-Jacques
    Eby, Wayne M.
    Bae, Sejong
    Guemmegne, Juliette T.
    Manne, Upender
    Fouad, Mona
    Partridge, Edward E.
    Singh, Karan P.
    [J]. PLOS ONE, 2014, 9 (09):
  • [10] A NONPARAMETRIC MIXED-EFFECTS MIXTURE MODEL FOR PATTERNS OF CLINICAL MEASUREMENTS ASSOCIATED WITH COVID-19
    Ma, Xiaoran
    Guo, Wensheg
    Gu, Mengyang
    Usvyat, Len
    Kotanko, Peter
    Wang, Yuedong
    [J]. ANNALS OF APPLIED STATISTICS, 2024, 18 (03): : 2080 - 2095