VERTICAL-DISTRIBUTION;
COMMUNITY COMPOSITION;
STRATIFIED LAKE;
TRACE-ELEMENTS;
WATER COLUMN;
LAC PAVIN;
TRANSPORT;
IRON;
CONSTRAINTS;
DYNAMICS;
D O I:
10.1016/j.apgeochem.2011.06.021
中图分类号:
P3 [地球物理学];
P59 [地球化学];
学科分类号:
0708 ;
070902 ;
摘要:
Methane is a powerful greenhouse gas and its concentration in the atmosphere has increased over the past decades. Methane produced by methanogenic Archae can be consumed through aerobic and anaerobic oxidation pathways. In anoxic conditions found in freshwater environments such as meromictic lakes, CH4 oxidation pathways involving different terminal electron acceptors such as NO3-, SO42-, and oxides of Fe and Mn are thermodynamically possible. In this study, a reactive transport model was developed to assess the relative significance of the different pathways of CH4 consumption in the water column of Lake Pavin. In most cases, the model reproduced experimental data collected from the field from June 2006 to June 2007. Although the model and the field measurements suggest that anaerobic CH4 oxidation may contribute to CH4 consumption in the water column of Lake Pavin, aerobic oxidation remains the major sink of CH4 in this lake. (C) 2011 Elsevier Ltd. All rights reserved.