Lab Scale Model Experiment of Smart Hopper System to Remove Blockages Using Machine Vision and Collaborative Robot

被引:5
|
作者
Kim, Heonmoo [1 ]
Choi, Yosoon [1 ]
机构
[1] Pukyong Natl Univ, Dept Energy Resources Engn, Busan 48513, South Korea
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 02期
基金
新加坡国家研究基金会;
关键词
smart hopper; RGB-D camera; robot; image processing; machine vision technology; LOCATION ESTIMATION;
D O I
10.3390/app12020579
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, we propose a smart hopper system that automatically unblocks obstructions caused by rocks dropped into hoppers at mining sites. The proposed system captures RGB (red green blue) and D (depth) images of the upper surfaces of hopper models using an RGB-D camera and transmits them to a computer. Then, a virtual hopper system is used to identify rocks via machine vision-based image processing techniques, and an appropriate motion is simulated in a robot arm. Based on the simulation, the robot arm moves to the location of the rock in the real world and removes it from the actual hopper. The recognition accuracy of the proposed model is evaluated in terms of the quantity and location of rocks. The results confirm that rocks are accurately recognized at all positions in the hopper by the proposed system.
引用
收藏
页数:18
相关论文
共 36 条
  • [21] Smart Air Pollution Monitoring System with Smog Prediction Model using Machine Learning
    Siddiqui, Salman Ahmad
    Fatima, Neda
    Ahmad, Anwar
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (08) : 401 - 409
  • [22] A machine learning recommender system based on collaborative filtering using Gaussian mixture model clustering
    Fakoor, Delshad
    Maihami, Vafa
    Maihami, Reza
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021,
  • [23] Developing 3D Model for Mobile Robot Environment Using Mono-Vision System
    Al-Jarrah, Mohammad A.
    2016 7TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY (CSIT), 2016,
  • [24] An accurate and dynamic predictive model for a smart M-Health system using machine learning
    Qureshi, Kashif Naseer
    Din, Sadia
    Jeon, Gwanggil
    Piccialli, Francesco
    INFORMATION SCIENCES, 2020, 538 : 486 - 502
  • [25] Improved positional accuracy of dental implant placement using a haptic and machine-vision-controlled collaborative surgery robot: A pilot randomized controlled trial
    Shi, Jun-Yu
    Liu, Bei-Lei
    Wu, Xin-Yu
    Liu, Min
    Zhang, Qi
    Lai, Hong-Chang
    Tonetti, Maurizio S.
    JOURNAL OF CLINICAL PERIODONTOLOGY, 2024, 51 (01) : 24 - 32
  • [26] Pointer-Based Item-to-Item Collaborative Filtering Recommendation System Using a Machine Learning Model
    Iwendi, Celestine
    Ibeke, Ebuka
    Eggoni, Harshini
    Velagala, Sreerajavenkatareddy
    Srivastava, Gautam
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING, 2022, 21 (01) : 463 - 484
  • [27] EMT Model Validation of DFIG Wind Turbine Using Full-Scale Flectrical System Lab Tests and Lessons Learned
    Kazemi, Amir
    Kaur, Jagdeep
    Ramirez, Fernando
    Gautam, Durga
    Lwin, Min
    Ridenour, Amy
    2023 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, PESGM, 2023,
  • [28] Automated Assistance Robot System for Transferring Model-Free Objects From/To Human Hand Using Vision/Force Control
    Bdiwi, Mohamad
    Kolker, Alexey
    Suchy, Jozef
    Winkler, Alexander
    SOCIAL ROBOTICS, ICSR 2013, 2013, 8239 : 40 - 53
  • [29] Führung eines Industrieroboters mit Hilfe eines BilderkennungssystemsControl of an industrial robot using a model-based vision system
    H. Schweinzer
    W. Ponweiser
    M. Vincze
    Ch. Mittermayer
    P. Krammer
    e&i Elektrotechnik und Informationstechnik, 2001, 118 (11) : 575 - 582
  • [30] Experiment of Model Based Non Linear Control Design for Altitude Control of Quadrotor Using Vision-Based Localization System
    Johan, Fransiscus Xaverius
    Joelianto, Endra
    Widyotriatmo, Augie
    Salmah
    2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS, BIOMIMETICS, AND INTELLIGENT COMPUTATIONAL SYSTEMS (ROBIONETICS), 2013, : 206 - 211