PDE-CONSTRAINED OPTIMIZATION FOR NUCLEAR MECHANICS

被引:0
|
作者
Kesenci, Yekta [1 ,2 ]
Boquet-Pujadas, Aleix [3 ]
van Bodegraven, Emma [4 ]
Etienne-Manneville, Sandrine [5 ]
Re, Elisabeth Labruye [1 ]
Olivo-Marin, Jean-Christophe [1 ]
机构
[1] Inst Pasteur, CNRS UMR 3691, BioImage Anal Unit, Paris, France
[2] Univ Paris, Paris, France
[3] Ecole Polytech Fed Lausanne, Biomed Imaging Grp, Stn 17, CH-1015 Lausanne, Switzerland
[4] Univ Utrecht, Dept Translat Neurosci, Brain Ctr, UMC Utrecht, NL-3584 CG Utrecht, Netherlands
[5] Inst Pasteur, UMR3691 CNRS, Cell Polar Migrat & Canc Unit, Paris, France
关键词
Nuclear mechanics; adjoint method; optical flow;
D O I
10.1109/ICIP46576.2022.9897967
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose an image based PDE-constrained optimisation framework to compute the dynamical quantities of a cell nucleus undergoing deformation. It allows retrieving the displacement, strain and stress at each pixel of the nuclear domain, as well as the traction force on the boundary. It is based on a mechanical model of the nuclear components and a pair of images documenting the deformation of the cell nucleus. To test our approach, we provide a warping method that produces a second image from an initial one along with the expected mechanical quantities. Both quantitative and qualitative analysis conclude for a significant and consistent improvement of our method over optical flow techniques.
引用
收藏
页码:2192 / 2195
页数:4
相关论文
共 50 条
  • [41] A PDE-constrained optimization approach for topology optimization of strained photonic devices
    Adam, L.
    Hintermueller, M.
    Surowiec, T. M.
    OPTIMIZATION AND ENGINEERING, 2018, 19 (03) : 521 - 557
  • [42] On a PDE-Constrained Optimization Approach for Flow Simulations in Fractured Media
    Pieraccini, Sandra
    Scialo, Stefano
    ADVANCES IN DISCRETIZATION METHODS: DISCONTINUITIES, VIRTUAL ELEMENTS, FICTITIOUS DOMAIN METHODS, 2016, 12 : 27 - 45
  • [43] A Preconditioned GMRES Method for Elliptic PDE-constrained Optimization Problems
    Zhu, Cong-Yi
    Huang, Yu-Mei
    2014 TENTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2014, : 711 - 713
  • [44] A new approximation of the Schur complement in preconditioners for PDE-constrained optimization
    Pearson, John W.
    Wathen, Andrew J.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2012, 19 (05) : 816 - 829
  • [45] A PDE-CONSTRAINED OPTIMIZATION FORMULATION FOR DISCRETE FRACTURE NETWORK FLOWS
    Berrone, Stefano
    Pieraccini, Sandra
    Scialo, Stefano
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (02): : B487 - B510
  • [46] A note on multigrid preconditioning for fractional PDE-constrained optimization problems
    Antil, Harbir
    Draganescu, Andrei
    Green, Kiefer
    RESULTS IN APPLIED MATHEMATICS, 2021, 9 (09):
  • [47] Lossy compression for PDE-constrained optimization: adaptive error control
    Sebastian Götschel
    Martin Weiser
    Computational Optimization and Applications, 2015, 62 : 131 - 155
  • [48] Learning dynamics on invariant measures using PDE-constrained optimization
    Botvinick-Greenhouse, Jonah
    Martin, Robert
    Yang, Yunan
    CHAOS, 2023, 33 (06)
  • [49] A high order PDE-constrained optimization for the image denoising problem
    Afraites, Lekbir
    Hadri, Aissam
    Laghrib, Amine
    Nachaoui, Mourad
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2021, 29 (12) : 1821 - 1863
  • [50] Lossy compression for PDE-constrained optimization: adaptive error control
    Goetschel, Sebastian
    Weiser, Martin
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2015, 62 (01) : 131 - 155