PDE-CONSTRAINED OPTIMIZATION FOR NUCLEAR MECHANICS

被引:0
|
作者
Kesenci, Yekta [1 ,2 ]
Boquet-Pujadas, Aleix [3 ]
van Bodegraven, Emma [4 ]
Etienne-Manneville, Sandrine [5 ]
Re, Elisabeth Labruye [1 ]
Olivo-Marin, Jean-Christophe [1 ]
机构
[1] Inst Pasteur, CNRS UMR 3691, BioImage Anal Unit, Paris, France
[2] Univ Paris, Paris, France
[3] Ecole Polytech Fed Lausanne, Biomed Imaging Grp, Stn 17, CH-1015 Lausanne, Switzerland
[4] Univ Utrecht, Dept Translat Neurosci, Brain Ctr, UMC Utrecht, NL-3584 CG Utrecht, Netherlands
[5] Inst Pasteur, UMR3691 CNRS, Cell Polar Migrat & Canc Unit, Paris, France
关键词
Nuclear mechanics; adjoint method; optical flow;
D O I
10.1109/ICIP46576.2022.9897967
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose an image based PDE-constrained optimisation framework to compute the dynamical quantities of a cell nucleus undergoing deformation. It allows retrieving the displacement, strain and stress at each pixel of the nuclear domain, as well as the traction force on the boundary. It is based on a mechanical model of the nuclear components and a pair of images documenting the deformation of the cell nucleus. To test our approach, we provide a warping method that produces a second image from an initial one along with the expected mechanical quantities. Both quantitative and qualitative analysis conclude for a significant and consistent improvement of our method over optical flow techniques.
引用
收藏
页码:2192 / 2195
页数:4
相关论文
共 50 条
  • [31] Block preconditioners for elliptic PDE-constrained optimization problems
    Zhong-Zhi Bai
    Computing, 2011, 91 : 379 - 395
  • [32] KKT PRECONDITIONERS FOR PDE-CONSTRAINED OPTIMIZATION WITH THE HELMHOLTZ EQUATION
    Kouri, Drew P.
    Ridzal, Denis
    Tuminaro, Ray
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (05): : S225 - S248
  • [33] A new preconditioner for elliptic PDE-constrained optimization problems
    Hamid Mirchi
    Davod Khojasteh Salkuyeh
    Numerical Algorithms, 2020, 83 : 653 - 668
  • [34] Large-scale PDE-constrained optimization: An introduction
    Biegler, LT
    Ghattas, O
    Heinkenschloss, M
    Waanders, BV
    LARGE-SCALE PDE-CONSTRAINED OPTIMIZATION, 2003, 30 : 3 - 13
  • [35] Block-triangular preconditioners for PDE-constrained optimization
    Rees, Tyrone
    Stoll, Martin
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2010, 17 (06) : 977 - 996
  • [36] PERFORMANCE BOUNDS FOR PDE-CONSTRAINED OPTIMIZATION UNDER UNCERTAINTY
    Chen, Peng
    Royset, Johannes O.
    SIAM JOURNAL ON OPTIMIZATION, 2023, 33 (03) : 1828 - 1854
  • [37] A new preconditioner for elliptic PDE-constrained optimization problems
    Mirchi, Hamid
    Salkuyeh, Davod Khojasteh
    NUMERICAL ALGORITHMS, 2020, 83 (02) : 653 - 668
  • [38] Preconditioning for PDE-constrained optimization with total variation regularization
    Li, Hongyi
    Wang, Chaojie
    Zhao, Di
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 386
  • [39] Superlinear Convergence of the GMRES for PDE-Constrained Optimization Problems
    Axelsson, O.
    Karatson, J.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2018, 39 (09) : 921 - 936
  • [40] A PDE-constrained optimization approach for topology optimization of strained photonic devices
    L. Adam
    M. Hintermüller
    T. M. Surowiec
    Optimization and Engineering, 2018, 19 : 521 - 557