Learning Single-Image Depth from Videos using Quality Assessment Networks

被引:9
|
作者
Chen, Weifeng [1 ,2 ]
Qian, Shengyi [1 ]
Deng, Jia [2 ]
机构
[1] Univ Michigan, Ann Arbor, MI 48109 USA
[2] Princeton Univ, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
VISION;
D O I
10.1109/CVPR.2019.00575
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Depth estimation from a single image in the wild remains a challenging problem. One main obstacle is the lack of high-quality training data for images in the wild. In this paper we propose a method to automatically generate such data through Structure-from-Motion (SfM) on Internet videos. The core of this method is a Quality Assessment Network that identifies high-quality reconstructions obtained from SfM. Using this method, we collect single-view depth training data from a large number of YouTube videos and construct a new dataset called YouTube3D. Experiments show that YouTube3D is useful in training depth estimation networks and advances the state of the art of single-view depth estimation in the wild.
引用
收藏
页码:5587 / 5596
页数:10
相关论文
共 50 条
  • [31] Stacked dense networks for single-image snow removal
    Li, Pengyue
    Yun, Mengshen
    Tian, Jiandong
    Tang, Yandong
    Wang, Guolin
    Wu, Chengdong A.
    NEUROCOMPUTING, 2019, 367 : 152 - 163
  • [32] Single-image deblurring with neural networks: A comparative survey
    Koh, Jaihyun
    Lee, Jangho
    Yoon, Sungroh
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2021, 203
  • [33] GeoCalib: Learning Single-Image Calibration with Geometric Optimization
    Veicht, Alexander
    Sarlin, Paul-Edouard
    Lindenberger, Philipp
    Pollefeys, Marc
    COMPUTER VISION - ECCV 2024, PT XL, 2025, 15098 : 1 - 20
  • [34] Field evaluation of a novel holographic single-image depth reconstruction sensor
    Hartlieb, Simon
    Schober, Christian
    Haist, Tobias
    Reichelt, Stephan
    JOURNAL OF THE EUROPEAN OPTICAL SOCIETY-RAPID PUBLICATIONS, 2023, 19 (01)
  • [35] Single-Image Defogging Algorithm Based on Deep Learning
    Zhao Jiantang
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (11)
  • [36] Unsupervised High-Resolution Depth Learning From Videos With Dual Networks
    Zhou, Junsheng
    Wang, Yuwang
    Qin, Kaihuai
    Zeng, Wenjun
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 6871 - 6880
  • [37] Image quality assessment by using neural networks
    Carrai, P
    Heynderickx, I
    Gastaldo, P
    Zunino, R
    2002 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL V, PROCEEDINGS, 2002, : 253 - 256
  • [38] UW-GAN: Single-Image Depth Estimation and Image Enhancement for Underwater Images
    Hambarde, Praful
    Murala, Subrahmanyam
    Dhall, Abhinav
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70 (70)
  • [39] Evaluation of CNN-Based Single-Image Depth Estimation Methods
    Koch, Tobias
    Liebel, Lukas
    Fraundorfer, Friedrich
    Koerner, Marco
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT III, 2019, 11131 : 331 - 348
  • [40] SINGLE-IMAGE 3-D DEPTH ESTIMATION FOR URBAN SCENES
    Cheng, Hsin-Min
    Tseng, Chen-Yu
    Hsin, Cheng-Ho
    Wang, Sheng-Jyh
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 2121 - 2125