Learning Single-Image Depth from Videos using Quality Assessment Networks

被引:9
|
作者
Chen, Weifeng [1 ,2 ]
Qian, Shengyi [1 ]
Deng, Jia [2 ]
机构
[1] Univ Michigan, Ann Arbor, MI 48109 USA
[2] Princeton Univ, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
VISION;
D O I
10.1109/CVPR.2019.00575
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Depth estimation from a single image in the wild remains a challenging problem. One main obstacle is the lack of high-quality training data for images in the wild. In this paper we propose a method to automatically generate such data through Structure-from-Motion (SfM) on Internet videos. The core of this method is a Quality Assessment Network that identifies high-quality reconstructions obtained from SfM. Using this method, we collect single-view depth training data from a large number of YouTube videos and construct a new dataset called YouTube3D. Experiments show that YouTube3D is useful in training depth estimation networks and advances the state of the art of single-view depth estimation in the wild.
引用
收藏
页码:5587 / 5596
页数:10
相关论文
共 50 条
  • [21] Depth-attentional Features for Single-image Rain Removal
    Hu, Xiaowei
    Fu, Chi-Wing
    Zhu, Lei
    Heng, Pheng-Ann
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 8014 - 8023
  • [22] Single-image depth estimation by refined segmentation and consistency reconstruction
    Liu, Huajun
    Lei, Dian
    Zhu, Qing
    Sui, Haigang
    Zhang, Huanran
    Wang, Ziyan
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2021, 90
  • [23] Single-Image Depth Estimation Based on Fourier Domain Analysis
    Lee, Jae-Han
    Heo, Minhyeok
    Kim, Kyung-Rae
    Kim, Chang-Su
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 330 - 339
  • [24] Summarization of Videos by Image Quality Assessment
    Mussel Cirne, Marcos Vinicius
    Pedrini, Helio
    PROGRESS IN PATTERN RECOGNITION IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2014, 2014, 8827 : 901 - 908
  • [25] QCNN-H: Single-Image Dehazing Using Quaternion Neural Networks
    Frants, Vladimir
    Agaian, Sos
    Panetta, Karen
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (09) : 5448 - 5458
  • [26] Realistic single-image super-resolution using autoencoding adversarial networks
    Li, Wanlan
    Li, Guangyao
    Yue, Weidong
    Xu, Hao
    JOURNAL OF ELECTRONIC IMAGING, 2018, 27 (06)
  • [27] Self-Supervised Single-Image Depth Estimation From Focus and Defocus Clues
    Lu, Yawen
    Milliron, Garrett
    Slagter, John
    Lu, Guoyu
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (04) : 6281 - 6288
  • [28] Implicit Euler ODE Networks for Single-Image Dehazing
    Shen, Jiawei
    Li, Zhuoyan
    Yu, Lei
    Xia, Gui-Song
    Yang, Wen
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 877 - 886
  • [29] Single-image shape from defocus
    Torreao, JRA
    Fernandes, JL
    SIBGRAPI 2005: XVIII BRAZILIAN SYMPOSIUM ON COMPUTER GRAPHICS AND IMAGE PROCESSING, CONFERENCE PROCEEDINGS, 2005, : 241 - 246
  • [30] Learning Depth from Monocular Videos using Direct Methods
    Wang, Chaoyang
    Miguel Buenaposada, Jose
    Zhu, Rui
    Lucey, Simon
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 2022 - 2030