Characterizations of * and *-left derivable mappings on some algebras

被引:0
|
作者
An, Guangyu [1 ]
He, Jun [2 ]
Li, Jiankui [3 ]
机构
[1] Shaanxi Univ Sci & Technol, Dept Math, Xian 710021, Peoples R China
[2] Anhui Polytech Univ, Dept Math, Wuhu 241000, Peoples R China
[3] East China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
关键词
*-Derivable mapping; *-Left derivable mapping; C *-algebra; Von Neumann algebra; JORDAN LEFT DERIVATIONS; ADDITIVE MAPS; LINEAR-MAPS; RINGS; OPERATOR;
D O I
10.1007/s43034-019-00047-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A linear mapping d from a *-algebra A into a *-A-bimodule M is a *-derivable mapping at G. A if Ad(B)* + d( A) B = d(G) for each A, B in A with AB* = G. We prove that every (continuous) *-derivablemapping at G from a (unital C *-algebra) factor von Neumann algebra into its Banach *-bimodule is a *-derivation if and only if G is a left separating point. A linear mapping d from a *-algebra A into a *-left A-module M is a *-left derivable mapping at G. A if Ad( B)* + Bd( A) = d( G) for each A, B in A with AB* = G. We prove that every continuous *-left derivable mapping at a left separating point from a unital C*-algebra or von Neumann algebra into its Banach *-left A-module is identical with zero under certain conditions.
引用
收藏
页码:680 / 692
页数:13
相关论文
共 50 条
  • [41] Some characterizations of fundamental graded algebras
    Pascucci, Elena
    JOURNAL OF ALGEBRA, 2025, 666 : 607 - 632
  • [42] Some characterizations of hermitian Banach algebras
    Nejjari M.A.
    Rendiconti del Circolo Matematico di Palermo Series 2, 2017, 66 (3): : 295 - 301
  • [43] SOME CHARACTERIZATIONS OF NILPOTENT LIE ALGEBRAS
    CHAO, CY
    MATHEMATISCHE ZEITSCHRIFT, 1968, 103 (01) : 40 - &
  • [44] SOME CHARACTERIZATIONS OF DENDROIDS AND WEAKLY MONOTONE MAPPINGS
    MACKOWIAK, T
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1976, 24 (03): : 177 - 182
  • [45] Categorical Characterizations of Some Results on Induced Mappings
    Goyal, Nitakshi
    Noorie, Navpreet Singh
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2019, 51 (05): : 15 - 25
  • [46] Some characterizations of equivalence relation on contraction mappings
    Akinwunmi, S. A.
    Mogbonju, M. M.
    Ibrahim, G. R.
    SCIENTIFIC AFRICAN, 2020, 10
  • [47] Generalized derivable mappings and centralizable mappings on B(X)
    He, Jun
    Zhao, Haixia
    An, Guangyu
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (17): : 2719 - 2727
  • [48] Jordan and Jordan higher all-derivable points of some algebras
    Li, Jiankui
    Pan, Zhidong
    Shen, Qihua
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (06): : 831 - 845
  • [49] JORDAN DERIVABLE MAPPINGS ON B(H)
    Chen, L.
    Guo, F.
    Qin, Z. -j.
    ACTA MATHEMATICA HUNGARICA, 2024, 173 (01) : 112 - 121
  • [50] Lie derivable mappings on prime rings
    Jing, Wu
    Lu, Fangyan
    LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (02): : 167 - 180