Some characterizations of equivalence relation on contraction mappings

被引:0
|
作者
Akinwunmi, S. A. [1 ]
Mogbonju, M. M. [2 ]
Ibrahim, G. R. [3 ]
机构
[1] Fed Univ Kashere, Fac Sci, Dept Math & Comp Sci, PMB 0182, Gombe, Nigeria
[2] Univ Abuja, Fac Phys Sci, Dept Math, PMB 117, Abuja, Nigeria
[3] Kwara State Univ Malete, Fac Sci, Dept Stat & Math Sci, PMB 1530, Kwara, Nigeria
关键词
Contraction mapping; Collapse; Height; Waist; Equivalence relation;
D O I
10.1016/j.sciaf.2020.e00643
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Let T-n be the set of full transformations and P-n be the set of partial transformations. It is shown that T-n form a semi-group of order n(n) and P-n form a semi-group of order (n + 1)(n). Let rho (n, m) be a binary relation then we define the image set of rho (n, m), I(rho): {n vertical bar n is an element of N and there exists m is an element of M: (m, n) is an element of rho} whenever ((math) rho): (math) rho on a set M is called an equivalence relation if (math) rho is reflexive, symmetric and transitive. Then, For all m is an element of M, we let [m] equivalence class denote the set [m] = {n is an element of M vertical bar n (math) rho m} with respect to (math) rho determine by m. Furthermore, we show that D = L circle R = R circle L = L upsilon R. implies L subset of J and R subset of J. Therefore, D is the minimum equivalence relation class containing L and R. Hence, D subset of J. If n is an element of X-m: {n is an element of X-m vertical bar n x n = n; nx = xn} then n is an element of D-class is regular. We also show that for L-class, R-class and H-class for all m, n is an element of D(alpha) we have alpha such that D(alpha) subset of M implies I(alpha) subset of M. Then for any transformation of a finite semi-group beta, alpha is an element of S where alpha = [GRAPHICS] and beta = [GRAPHICS] , alpha and beta represent the five equivalence relations and CPn represent the sub-semi-group of partial contraction mapping on M = {1, 2, 3 . . .} while vertical bar Q vertical bar denotes the order of Q. (C) 2020 The Authors. Published by Elsevier B.V. on behalf of African Institute of Mathematical Sciences / Next Einstein Initiative.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] On some characterizations of preinvex fuzzy mappings
    Rufian-Lizana, A.
    Chalco-Cano, Y.
    Ruiz-Garzon, G.
    Roman-Flores, H.
    TOP, 2014, 22 (02) : 771 - 783
  • [2] On some characterizations of preinvex fuzzy mappings
    A. Rufián-Lizana
    Y. Chalco-Cano
    G. Ruiz-Garzón
    H. Román-Flores
    TOP, 2014, 22 : 771 - 783
  • [3] Analytical Meir–Keeler type contraction mappings and equivalent characterizations
    Abhijit Pant
    Rajendra Prasad Pant
    Wutiphol Sintunavarat
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [4] On an equivalence relation for free mappings embeddeable in a flow
    Lesniak, Z
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (07): : 1911 - 1915
  • [5] On some generalized contraction type mappings
    Nicolae, Adriana
    APPLIED MATHEMATICS LETTERS, 2010, 23 (02) : 133 - 136
  • [6] SOME REMARKS CONCERNING CONTRACTION MAPPINGS
    REICH, S
    CANADIAN MATHEMATICAL BULLETIN, 1971, 14 (01): : 121 - &
  • [7] SOME CHARACTERIZATIONS OF DENDROIDS AND WEAKLY MONOTONE MAPPINGS
    MACKOWIAK, T
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1976, 24 (03): : 177 - 182
  • [8] Characterizations of * and *-left derivable mappings on some algebras
    An, Guangyu
    He, Jun
    Li, Jiankui
    ANNALS OF FUNCTIONAL ANALYSIS, 2020, 11 (03) : 680 - 692
  • [9] Categorical Characterizations of Some Results on Induced Mappings
    Goyal, Nitakshi
    Noorie, Navpreet Singh
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2019, 51 (05): : 15 - 25
  • [10] Analytical Meir-Keeler type contraction mappings and equivalent characterizations
    Pant, Abhijit
    Pant, Rajendra Prasad
    Sintunavarat, Wutiphol
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (01)