Characterizations of * and *-left derivable mappings on some algebras

被引:0
|
作者
An, Guangyu [1 ]
He, Jun [2 ]
Li, Jiankui [3 ]
机构
[1] Shaanxi Univ Sci & Technol, Dept Math, Xian 710021, Peoples R China
[2] Anhui Polytech Univ, Dept Math, Wuhu 241000, Peoples R China
[3] East China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
关键词
*-Derivable mapping; *-Left derivable mapping; C *-algebra; Von Neumann algebra; JORDAN LEFT DERIVATIONS; ADDITIVE MAPS; LINEAR-MAPS; RINGS; OPERATOR;
D O I
10.1007/s43034-019-00047-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A linear mapping d from a *-algebra A into a *-A-bimodule M is a *-derivable mapping at G. A if Ad(B)* + d( A) B = d(G) for each A, B in A with AB* = G. We prove that every (continuous) *-derivablemapping at G from a (unital C *-algebra) factor von Neumann algebra into its Banach *-bimodule is a *-derivation if and only if G is a left separating point. A linear mapping d from a *-algebra A into a *-left A-module M is a *-left derivable mapping at G. A if Ad( B)* + Bd( A) = d( G) for each A, B in A with AB* = G. We prove that every continuous *-left derivable mapping at a left separating point from a unital C*-algebra or von Neumann algebra into its Banach *-left A-module is identical with zero under certain conditions.
引用
收藏
页码:680 / 692
页数:13
相关论文
共 50 条
  • [1] LEFT DERIVABLE OR JORDAN LEFT DERIVABLE MAPPINGS ON BANACH ALGEBRAS
    Ding, Yang
    Li, J.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2017, 43 (02): : 427 - 437
  • [2] Characterizations of (m,n)-Jordan Derivations and (m,n)-Jordan Derivable Mappings on Some Algebras
    Guang Yu An
    Jun He
    Acta Mathematica Sinica, English Series, 2019, 35 : 378 - 390
  • [3] Characterizations of(m, n)-Jordan Derivations and(m, n)-Jordan Derivable Mappings on Some Algebras
    Guang Yu AN
    Jun HE
    Acta Mathematica Sinica,English Series, 2019, (03) : 378 - 390
  • [4] Characterizations of (m,n)-Jordan Derivations and (m,n)-Jordan Derivable Mappings on Some Algebras
    An, Guang Yu
    He, Jun
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2019, 35 (03) : 378 - 390
  • [5] Characterizations of(m, n)-Jordan Derivations and(m, n)-Jordan Derivable Mappings on Some Algebras
    Guang Yu AN
    Jun HE
    ActaMathematicaSinica, 2019, 35 (03) : 378 - 390
  • [6] Generalized derivable mappings at zero point on some reflexive operator algebras
    Zhu, J
    Xiong, CP
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 397 : 367 - 379
  • [7] Some Generalizations of *-Lie Derivable Mappings and Their Characterization on Standard Operator Algebras
    Fadaee, Behrooz
    Ghahramani, Hoger
    Moradi, Heydar
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2023, 49 (05)
  • [8] CHARACTERIZATIONS OF JORDAN DERIVABLE MAPPINGS AT THE UNIT ELEMENT
    Li, Jiankui
    Li, Shan
    Luo, Kaijia
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 59 (02) : 277 - 283
  • [9] CHARACTERIZATIONS OF *-LIE DERIVABLE MAPPINGS ON PRIME *-RINGS
    Alkenani, Ahmad N.
    Ashraf, Mohammad
    Wani, Bilal Ahmad
    RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2019, 23 (538): : 51 - 69
  • [10] *-Lie Derivable Mappings on Von Neumann Algebras
    Li, Changjing
    Chen, Quanyuan
    Wang, Ting
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2016, 4 (01) : 81 - 92