JMcmprsk: An R Package for Joint Modelling of Longitudinal and Survival Data with Competing Risks

被引:0
|
作者
Wang, Hong [1 ]
Li, Ning [2 ]
Li, Shanpeng [3 ]
Li, Gang [3 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410075, Hunan, Peoples R China
[2] UCLA Biomath, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Sch Publ Hlth, Dept Biostat, Los Angeles, CA 90095 USA
来源
R JOURNAL | 2021年 / 13卷 / 01期
关键词
TO-EVENT DATA;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we describe an R package named JMcmprsk, for joint modelling of longitudinal and survival data with competing risks. The package in its current version implements two joint models of longitudinal and survival data proposed to handle competing risks survival data together with continuous and ordinal longitudinal outcomes respectively (Elashoff et al., 2008; Li et al., 2010). The corresponding R implementations are further illustrated with real examples. The package also provides simulation functions to simulate datasets for joint modelling with continuous or ordinal outcomes under the competing risks scenario, which provide useful tools to validate and evaluate new joint modelling methods.
引用
收藏
页码:53 / 68
页数:16
相关论文
共 50 条
  • [41] JOINT MODELLING OF LONGITUDINAL CLINICAL PARAMETERS AND COMPETING RISK DATA IN PERITONEAL DIALYSIS PATIENTS
    Teixeira, Laetitia
    Sousa, Ines
    Rodrigues, Anabela
    Mendonca, Denisa
    [J]. NEPHROLOGY DIALYSIS TRANSPLANTATION, 2014, 29 : 472 - 472
  • [42] A flexible link for joint modelling longitudinal and survival data accounting for individual longitudinal heterogeneity
    Rui Martins
    [J]. Statistical Methods & Applications, 2022, 31 : 41 - 61
  • [43] A flexible link for joint modelling longitudinal and survival data accounting for individual longitudinal heterogeneity
    Martins, Rui
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2022, 31 (01): : 41 - 61
  • [44] Fully exponential Laplace approximations for the joint modelling of survival and longitudinal data
    Rizopoulos, Dimitris
    Verbeke, Geert
    Lesaffre, Emmanuel
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2009, 71 : 637 - 654
  • [45] Joint Modeling of Multivariate Longitudinal Data and Competing Risks Using Multiphase Sub-models
    Rajeswaran J.
    Blackstone E.H.
    Barnard J.
    [J]. Statistics in Biosciences, 2018, 10 (3) : 651 - 685
  • [46] An R function to non-parametric and piecewise analysis of competing risks survival data
    Fillerona, Thomas
    Laplanche, Agnes
    Boher, Jean-Marie
    Kramar, Andrew
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2010, 100 (01) : 24 - 38
  • [47] SemiCompRisks: An R Package for the Analysis of Independent and Cluster-correlated Semi-competing Risks Data
    Alvares, Danilo
    Haneuse, Sebastien
    Lee, Catherine
    Lee, Kyu Ha
    [J]. R JOURNAL, 2019, 11 (01): : 376 - 400
  • [48] Joint regression analysis for survival data in the presence of two sets of semi-competing risks
    Peng, Mengjiao
    Xiang, Liming
    [J]. BIOMETRICAL JOURNAL, 2019, 61 (06) : 1402 - 1416
  • [49] Modelling Childhood Caries Using Parametric Competing Risks Survival Analysis Methods for Clustered Data
    Stephenson, J.
    Chadwick, B. L.
    Playle, R. A.
    Treasure, E. T.
    [J]. CARIES RESEARCH, 2010, 44 (01) : 69 - 80
  • [50] Modelling competing risks data with missing cause of failure
    Bakoyannis, Giorgos
    Siannis, Fotios
    Touloumi, Giota
    [J]. STATISTICS IN MEDICINE, 2010, 29 (30) : 3172 - 3185