SemiCompRisks: An R Package for the Analysis of Independent and Cluster-correlated Semi-competing Risks Data

被引:0
|
作者
Alvares, Danilo [1 ]
Haneuse, Sebastien [2 ]
Lee, Catherine [3 ]
Lee, Kyu Ha [4 ]
机构
[1] Pontificia Univ Catolica Chile, Dept Stat, Santiago, Chile
[2] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[3] Kaiser Permanente Northern Calif, Div Res, Oakland, CA 94612 USA
[4] Forsyth Inst, Epidemiol & Biostat Core, Cambridge, MA 02142 USA
来源
R JOURNAL | 2019年 / 11卷 / 01期
基金
美国国家卫生研究院;
关键词
SEMICOMPETING RISKS; SURVIVAL-DATA; SEMIPARAMETRIC ANALYSIS; FRAILTY MODELS; MULTISTATE MODELS; ASSOCIATION; RECURRENT; DEATH; OUTCOMES;
D O I
10.32614/RJ-2019-038
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Semi-competing risks refer to the setting where primary scientific interest lies in estimation and inference with respect to a non-terminal event, the occurrence of which is subject to a terminal event. In this paper, we present the R package SemiCompRisks that provides functions to perform the analysis of independent/clustered semi-competing risks data under the illness-death multi-state model. The package allows the user to choose the specification for model components from a range of options giving users substantial flexibility, including: accelerated failure time or proportional hazards regression models; parametric or non-parametric specifications for baseline survival functions; parametric or non-parametric specifications for random effects distributions when the data are cluster-correlated; and, a Markov or semi-Markov specification for terminal event following non-terminal event. While estimation is mainly performed within the Bayesian paradigm, the package also provides the maximum likelihood estimation for select parametric models. The package also includes functions for univariate survival analysis as complementary analysis tools.
引用
收藏
页码:376 / 400
页数:25
相关论文
共 50 条
  • [1] On semi-competing risks data
    Fine, JP
    Jiang, H
    Chappell, R
    [J]. BIOMETRIKA, 2001, 88 (04) : 907 - 919
  • [2] Causal inference for semi-competing risks data
    Nevo, Daniel
    Gorfine, Malka
    [J]. BIOSTATISTICS, 2022, 23 (04) : 1115 - 1132
  • [3] Semiparametric inferences for association with semi-competing risks data
    Ghosh, D
    [J]. STATISTICS IN MEDICINE, 2006, 25 (12) : 2059 - 2070
  • [4] Semiparametric regression analysis of clustered survival data with semi-competing risks
    Peng, Mengjiao
    Xiang, Liming
    Wang, Shanshan
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 124 : 53 - 70
  • [5] Bayesian Analysis of Survival Data with Semi-competing Risks and Treatment Switching
    Zhang, Yuanye
    Chen, Qingxia
    Chen, Ming-Hui
    Ibrahim, Joseph G.
    Zeng, Donglin
    Pan, Zhiying
    Xue, Xiaodong
    [J]. TOPICS IN APPLIED STATISTICS, 2013, 55 : 159 - 169
  • [6] A missing data approach to semi-competing risks problems
    Dignam, James J.
    Wieand, Kelly
    Rathouz, Paul J.
    [J]. STATISTICS IN MEDICINE, 2007, 26 (04) : 837 - 856
  • [7] The analysis of semi-competing risks data using Archimedean copula models
    Wang, Antai
    Guo, Ziyan
    Zhang, Yilong
    Wu, Jihua
    [J]. STATISTICA NEERLANDICA, 2024, 78 (01) : 191 - 207
  • [8] Frailty modelling approaches for semi-competing risks data
    Ha, Il Do
    Xiang, Liming
    Peng, Mengjiao
    Jeong, Jong-Hyeon
    Lee, Youngjo
    [J]. LIFETIME DATA ANALYSIS, 2020, 26 (01) : 109 - 133
  • [9] Frailty modelling approaches for semi-competing risks data
    Il Do Ha
    Liming Xiang
    Mengjiao Peng
    Jong-Hyeon Jeong
    Youngjo Lee
    [J]. Lifetime Data Analysis, 2020, 26 : 109 - 133
  • [10] Flexible association modelling and prediction with semi-competing risks data
    Li, Ruosha
    Cheng, Yu
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2016, 44 (03): : 361 - 374