A Restricted Dual Peaceman-Rachford Splitting Method for a Strengthened DNN Relaxation for QAP

被引:6
|
作者
Graham, Naomi [1 ]
Hu, Hao [2 ]
Im, Jiyoung [3 ]
Li, Xinxin [4 ]
Wolkowicz, Henry [3 ]
机构
[1] Univ British Columbia, Dept Comp Sci, Vancouver, BC V6T 1Z4, Canada
[2] Clemson Univ, Sch Math & Stat Sci, Clemson, SC 29634 USA
[3] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[4] Jilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
quadratic assignment problem; semidefinite relaxation; doubly nonnegative relaxation; facial reduction; Peaceman-Rachford splitting method; ALTERNATING DIRECTION METHOD; QUADRATIC ASSIGNMENT PROBLEM; LOCAL LINEAR CONVERGENCE; MULTIPLIERS; ALGORITHMS; LAYOUT; ADMM;
D O I
10.1287/ijoc.2022.1161
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Splitting methods in optimization arise when one can divide an optimization problem into two or more simpler subproblems. They have proven particularly successful for relaxations of problems involving discrete variables. We revisit and strengthen splitting methods for solving doubly nonnegative relaxations of the particularly difficult, NP-hard quadratic assignment problem. We use a modified restricted contractive splitting method approach. In particular, we show how to exploit redundant constraints in the subproblems. Our strengthened bounds exploit these new subproblems and new dual multiplier estimates to improve on the bounds and convergence results in the literature.
引用
收藏
页码:2125 / 2143
页数:19
相关论文
共 50 条
  • [41] Convergence of Peaceman-Rachford splitting method with Bregman distance for three-block nonconvex nonseparable optimization
    Zhao, Ying
    Lan, Heng-you
    Xu, Hai-yang
    DEMONSTRATIO MATHEMATICA, 2024, 57 (01)
  • [42] STABILITY ANALYSIS OF THE PEACEMAN-RACHFORD METHOD FOR PARABOLIC EQUATIONS WITH NONLOCAL CONDITIONS
    Sapagovas, Mifodijus
    Novickij, Jurij
    Ciupaila, Regimantas
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 2022 (44)
  • [43] A proximal Peaceman-Rachford splitting method for solving the multi-block separable convex minimization problems
    Wu, Zhongming
    Liu, Foxiang
    Li, Min
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (04) : 708 - 728
  • [44] A matched Peaceman-Rachford ADI method for solving parabolic interface problems
    Li, Chuan
    Zhao, Shan
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 299 : 28 - 44
  • [45] Generalized Peaceman-Rachford splitting method for multiple-block separable convex programming with applications to robust PCA
    Min Sun
    Yiju Wang
    Jing Liu
    Calcolo, 2017, 54 : 77 - 94
  • [46] Stability of a modified Peaceman-Rachford method for the paraxial Helmholtz equation on adaptive grids
    Sheng, Qin
    Sun, Hai-wei
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 325 : 259 - 271
  • [47] A proximal Peaceman–Rachford splitting method for compressive sensing
    Sun M.
    Liu J.
    Journal of Applied Mathematics and Computing, 2016, 50 (1-2) : 349 - 363
  • [48] Generalized Peaceman-Rachford splitting method for multiple-block separable convex programming with applications to robust PCA
    Sun, Min
    Wang, Yiju
    Liu, Jing
    CALCOLO, 2017, 54 (01) : 77 - 94
  • [49] Convergence study on strictly contractive Peaceman-Rachford splitting method for nonseparable convex minimization models with quadratic coupling terms
    Li, Peixuan
    Shen, Yuan
    Jiang, Suhong
    Liu, Zehua
    Chen, Caihua
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2021, 78 (01) : 87 - 124
  • [50] Solving degenerate reaction-diffusion equations via variable step Peaceman-Rachford splitting
    Cheng, H
    Lin, P
    Sheng, Q
    Tan, RCE
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 25 (04): : 1273 - 1292