Let X -> Y-0 be an abelian prime-to-p Galois covering of smooth schemes over a perfect field k of characteristic p > 0. Let Y be a smooth compactification of Y-0 such that Y - Y-0 is a normal crossings divisor on Y. We describe a logarithmic F-crystal on Y whose rational crystalline cohomology is the rigid cobomology of X, in particular provides a natural W[F]-lattice inside the latter; here W is the Witt vector ring of k. If a finite group G acts compatibly on X, Y-0 and Y then our construction is G-equivariant. As an example we apply it to Deligne-Lusztig varieties. For a finite field k, if G is a connected reductive algebraic group defined over k and L a k-rational torus satisfying a certain standard condition, we obtain a meaningful equivariant W[F]-lattice in the cohomology (L-adic or rigid) of the corresponding Deligne-Lusztig variety and an expression of its reduction modulo p in terms of equivariant Hodge cohomology groups. (c) 2006 Elsevier Inc. All rights reserved.
机构:
Univ Tokyo, Grad Sch Math Sci, 3-8-1 Komaba,Meguro ku, Tokyo 1538914, JapanUniv Tokyo, Grad Sch Math Sci, 3-8-1 Komaba,Meguro ku, Tokyo 1538914, Japan
机构:
Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R ChinaHong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
机构:
Chinese Univ Hong Kong, Shatin, Lady Shaw Bldg, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Shatin, Lady Shaw Bldg, Hong Kong, Peoples R China
He, Xuhua
Li, Chao
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Math, 2990 Broadway, New York, NY 10027 USAChinese Univ Hong Kong, Shatin, Lady Shaw Bldg, Hong Kong, Peoples R China
Li, Chao
Zhu, Yihang
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Math, 2990 Broadway, New York, NY 10027 USAChinese Univ Hong Kong, Shatin, Lady Shaw Bldg, Hong Kong, Peoples R China
机构:
Chinese Univ Hong Kong, Inst Math Sci, Hong Kong, Peoples R China
Chinese Univ Hong Kong, Dept Math, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Inst Math Sci, Hong Kong, Peoples R China
机构:
Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R ChinaUniv Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
Chen, Ling
Nie, Sian
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100190, Peoples R ChinaUniv Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China