FINE DELIGNE-LUSZTIG VARIETIES AND ARITHMETIC FUNDAMENTAL LEMMAS
被引:7
|
作者:
He, Xuhua
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Shatin, Lady Shaw Bldg, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Shatin, Lady Shaw Bldg, Hong Kong, Peoples R China
He, Xuhua
[1
]
Li, Chao
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Math, 2990 Broadway, New York, NY 10027 USAChinese Univ Hong Kong, Shatin, Lady Shaw Bldg, Hong Kong, Peoples R China
Li, Chao
[2
]
Zhu, Yihang
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Math, 2990 Broadway, New York, NY 10027 USAChinese Univ Hong Kong, Shatin, Lady Shaw Bldg, Hong Kong, Peoples R China
Zhu, Yihang
[2
]
机构:
[1] Chinese Univ Hong Kong, Shatin, Lady Shaw Bldg, Hong Kong, Peoples R China
[2] Columbia Univ, Dept Math, 2990 Broadway, New York, NY 10027 USA
We prove a character formula for some closed fine Deligne-Lusztig varieties. We apply it to compute fixed points for fine Deligne-Lusztig varieties arising from the basic loci of Shimura varieties of Coxeter type. As an application, we prove an arithmetic intersection formula for certain diagonal cycles on unitary and GSpin Rapoport-Zink spaces arising from the arithmetic Gan-Gross-Prasad conjectures. In particular, we prove the arithmetic fundamental lemma in the minuscule case, without assumptions on the residual characteristic.