FINE DELIGNE-LUSZTIG VARIETIES AND ARITHMETIC FUNDAMENTAL LEMMAS

被引:7
|
作者
He, Xuhua [1 ]
Li, Chao [2 ]
Zhu, Yihang [2 ]
机构
[1] Chinese Univ Hong Kong, Shatin, Lady Shaw Bldg, Hong Kong, Peoples R China
[2] Columbia Univ, Dept Math, 2990 Broadway, New York, NY 10027 USA
关键词
11G18; 14G17 (primary); 20G40 (secondary); G-STABLE PIECES; ELEMENTS;
D O I
10.1017/fms.2019.45
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a character formula for some closed fine Deligne-Lusztig varieties. We apply it to compute fixed points for fine Deligne-Lusztig varieties arising from the basic loci of Shimura varieties of Coxeter type. As an application, we prove an arithmetic intersection formula for certain diagonal cycles on unitary and GSpin Rapoport-Zink spaces arising from the arithmetic Gan-Gross-Prasad conjectures. In particular, we prove the arithmetic fundamental lemma in the minuscule case, without assumptions on the residual characteristic.
引用
收藏
页数:55
相关论文
共 50 条