A Farnesyltransferase Acts to Inhibit Ectopic Neurite Formation in C. elegans

被引:2
|
作者
Carr, David [1 ,2 ]
Sanchez-Alvarez, Leticia [1 ,2 ]
Imai, Janice H. [1 ]
Slatculescu, Cristina [1 ]
Noblett, Nathaniel [1 ,2 ]
Mao, Lei [3 ]
Beese, Lorena [3 ]
Colavita, Antonio [1 ,2 ,4 ]
机构
[1] Ottawa Hosp, Res Inst, Neurosci Program, Ottawa, ON, Canada
[2] Univ Ottawa, Dept Cellular & Mol Med, Ottawa, ON, Canada
[3] Duke Univ, Med Ctr, Dept Biochem, Durham, NC 27710 USA
[4] Univ Ottawa, Brain & Mind Res Inst, Ottawa, ON, Canada
来源
PLOS ONE | 2016年 / 11卷 / 06期
基金
美国国家卫生研究院; 加拿大自然科学与工程研究理事会; 加拿大健康研究院;
关键词
PLANAR CELL POLARITY; PRICKLE; PROTEIN; FARNESYLATION; LOCALIZATION; STRABISMUS; MIGRATION;
D O I
10.1371/journal.pone.0157537
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Genetic pathways that regulate nascent neurite formation play a critical role in neuronal morphogenesis. The core planar cell polarity components VANG-1/Van Gogh and PRKL-1/Prickle are involved in blocking inappropriate neurite formation in a subset of motor neurons in C. elegans. A genetic screen for mutants that display supernumerary neurites was performed to identify additional factors involved in this process. This screen identified mutations in fntb-1, the beta subunit of farnesyltransferase. We show that fntb-1 is expressed in neurons and acts cell-autonomously to regulate neurite formation. Prickle proteins are known to be post-translationally modified by farnesylation at their C-terminal CAAX motifs. We show that PRKL-1 can be recruited to the plasma membrane in both a CAAX-dependent and CAAX-independent manner but that PRKL-1 can only inhibit neurite formation in a CAAX-dependent manner.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Intrinsic and extrinsic mechanisms of synapse formation and specificity in C. elegans
    Ardalan Hendi
    Mizuki Kurashina
    Kota Mizumoto
    Cellular and Molecular Life Sciences, 2019, 76 : 2719 - 2738
  • [32] DNA Topoisomerase II acts as a mitotic scaffold protein in chromosome assembly in C. elegans
    Ranjan, R.
    Dorn, J. F.
    Maddox, P. S.
    MOLECULAR BIOLOGY OF THE CELL, 2011, 22
  • [33] UBC-9 Acts in GABA Neurons to Control Neuromuscular Signaling in C. elegans
    Kreyden, Victoria A.
    Mawi, Elly B.
    Rush, Kristen M.
    Kowalski, Jennifer R.
    NEUROSCIENCE INSIGHTS, 2020, 15
  • [34] TGFβ-like DAF-7 acts as a systemic signal for autophagy regulation in C. elegans
    Zhang, Yujie
    Qi, Linxiang
    Zhang, Hong
    JOURNAL OF CELL BIOLOGY, 2019, 218 (12): : 3998 - 4006
  • [35] Salmonella biofilm formation diminishes bacterial proliferation in the C. elegans intestine
    Thiers, Ines
    Lissens, Maries
    Langie, Hanne
    Lories, Bram
    Steenackers, Hans
    BIOFILM, 2024, 8
  • [36] Wnt signals and Frizzled receptors regulate dendrite formation in C. elegans
    Hilliard, Massimo A.
    Kirszenblat, Leonie
    Pattabiraman, Divya
    Neumann, Brent
    NEUROSCIENCE RESEARCH, 2011, 71 : E10 - E11
  • [37] Betaine acts on a ligand-gated ion channel in the nervous system of the nematode C. elegans
    Aude S Peden
    Patrick Mac
    You-Jun Fei
    Cecilia Castro
    Guoliang Jiang
    Kenneth J Murfitt
    Eric A Miska
    Julian L Griffin
    Vadivel Ganapathy
    Erik M Jorgensen
    Nature Neuroscience, 2013, 16 : 1794 - 1801
  • [38] Betaine acts on a ligand-gated ion channel in the nervous system of the nematode C. elegans
    Peden, Aude S.
    Mac, Patrick
    Fei, You-Jun
    Castro, Cecilia
    Jiang, Guoliang
    Murfitt, Kenneth J.
    Miska, Eric A.
    Griffin, Julian L.
    Ganapathy, Vadivel
    Jorgensen, Erik M.
    NATURE NEUROSCIENCE, 2013, 16 (12) : 1794 - 1801
  • [39] DPL-1 (DP) acts in the germ line to coordinate ovulation and fertilization in C. elegans
    Chi, Woo
    Reinke, Valerie
    MECHANISMS OF DEVELOPMENT, 2009, 126 (5-6) : 406 - 416
  • [40] Centriole assembly in C. elegans
    Pelletier, L
    O'Toole, ET
    Schwager, A
    Hyman, AA
    Müller-Reichert, T
    EUROPEAN JOURNAL OF CELL BIOLOGY, 2006, 85 : 122 - 123