A Farnesyltransferase Acts to Inhibit Ectopic Neurite Formation in C. elegans

被引:2
|
作者
Carr, David [1 ,2 ]
Sanchez-Alvarez, Leticia [1 ,2 ]
Imai, Janice H. [1 ]
Slatculescu, Cristina [1 ]
Noblett, Nathaniel [1 ,2 ]
Mao, Lei [3 ]
Beese, Lorena [3 ]
Colavita, Antonio [1 ,2 ,4 ]
机构
[1] Ottawa Hosp, Res Inst, Neurosci Program, Ottawa, ON, Canada
[2] Univ Ottawa, Dept Cellular & Mol Med, Ottawa, ON, Canada
[3] Duke Univ, Med Ctr, Dept Biochem, Durham, NC 27710 USA
[4] Univ Ottawa, Brain & Mind Res Inst, Ottawa, ON, Canada
来源
PLOS ONE | 2016年 / 11卷 / 06期
基金
美国国家卫生研究院; 加拿大自然科学与工程研究理事会; 加拿大健康研究院;
关键词
PLANAR CELL POLARITY; PRICKLE; PROTEIN; FARNESYLATION; LOCALIZATION; STRABISMUS; MIGRATION;
D O I
10.1371/journal.pone.0157537
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Genetic pathways that regulate nascent neurite formation play a critical role in neuronal morphogenesis. The core planar cell polarity components VANG-1/Van Gogh and PRKL-1/Prickle are involved in blocking inappropriate neurite formation in a subset of motor neurons in C. elegans. A genetic screen for mutants that display supernumerary neurites was performed to identify additional factors involved in this process. This screen identified mutations in fntb-1, the beta subunit of farnesyltransferase. We show that fntb-1 is expressed in neurons and acts cell-autonomously to regulate neurite formation. Prickle proteins are known to be post-translationally modified by farnesylation at their C-terminal CAAX motifs. We show that PRKL-1 can be recruited to the plasma membrane in both a CAAX-dependent and CAAX-independent manner but that PRKL-1 can only inhibit neurite formation in a CAAX-dependent manner.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] C. elegans HeALTH
    Neff, Ellen
    LAB ANIMAL, 2020, 49 (08) : 221 - 221
  • [22] Oogenesis in C. elegans
    Davis, Gregory M.
    Hipwell, Hayleigh
    Boag, Peter R.
    SEXUAL DEVELOPMENT, 2023, 17 (2-3) : 73 - 83
  • [23] RECOMBINATION IN C. ELEGANS
    ROSE, AM
    BAILLIE, DL
    GENETICS, 1979, 91 (04) : S106 - S107
  • [24] C. elegans HeALTH
    Ellen Neff
    Lab Animal, 2020, 49 : 221 - 221
  • [25] Intrinsic and extrinsic mechanisms of synapse formation and specificity in C. elegans
    Hendi, Ardalan
    Kurashina, Mizuki
    Mizumoto, Kota
    CELLULAR AND MOLECULAR LIFE SCIENCES, 2019, 76 (14) : 2719 - 2738
  • [26] Transgenesis in C. elegans
    Praitis, Vida
    Maduro, Morris F.
    CAENORHABDITIS ELEGANS: MOLECULAR GENETICS AND DEVELOPMENT, SECOND EDITION, 2011, 106 : 161 - 185
  • [27] C. elegans select
    Helen M Chamberlin
    Nature Methods, 2010, 7 : 693 - 695
  • [28] C. elegans select
    Chamberlin, Helen M.
    NATURE METHODS, 2010, 7 (09) : 693 - 695
  • [29] C. elegans and Ciliopathies
    不详
    ATLA-ALTERNATIVES TO LABORATORY ANIMALS, 2011, 39 (03): : 204 - 205
  • [30] rRNA intermediates coordinate the formation of nucleolar vacuoles in C. elegans
    Xu, Demin
    Chen, Xiangyang
    Kuang, Yan
    Hong, Minjie
    Xu, Ting
    Wang, Ke
    Huang, Xinya
    Fu, Chuanhai
    Ruan, Ke
    Zhu, Chengming
    Feng, Xuezhu
    Guang, Shouhong
    CELL REPORTS, 2023, 42 (08):