A Farnesyltransferase Acts to Inhibit Ectopic Neurite Formation in C. elegans

被引:2
|
作者
Carr, David [1 ,2 ]
Sanchez-Alvarez, Leticia [1 ,2 ]
Imai, Janice H. [1 ]
Slatculescu, Cristina [1 ]
Noblett, Nathaniel [1 ,2 ]
Mao, Lei [3 ]
Beese, Lorena [3 ]
Colavita, Antonio [1 ,2 ,4 ]
机构
[1] Ottawa Hosp, Res Inst, Neurosci Program, Ottawa, ON, Canada
[2] Univ Ottawa, Dept Cellular & Mol Med, Ottawa, ON, Canada
[3] Duke Univ, Med Ctr, Dept Biochem, Durham, NC 27710 USA
[4] Univ Ottawa, Brain & Mind Res Inst, Ottawa, ON, Canada
来源
PLOS ONE | 2016年 / 11卷 / 06期
基金
美国国家卫生研究院; 加拿大自然科学与工程研究理事会; 加拿大健康研究院;
关键词
PLANAR CELL POLARITY; PRICKLE; PROTEIN; FARNESYLATION; LOCALIZATION; STRABISMUS; MIGRATION;
D O I
10.1371/journal.pone.0157537
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Genetic pathways that regulate nascent neurite formation play a critical role in neuronal morphogenesis. The core planar cell polarity components VANG-1/Van Gogh and PRKL-1/Prickle are involved in blocking inappropriate neurite formation in a subset of motor neurons in C. elegans. A genetic screen for mutants that display supernumerary neurites was performed to identify additional factors involved in this process. This screen identified mutations in fntb-1, the beta subunit of farnesyltransferase. We show that fntb-1 is expressed in neurons and acts cell-autonomously to regulate neurite formation. Prickle proteins are known to be post-translationally modified by farnesylation at their C-terminal CAAX motifs. We show that PRKL-1 can be recruited to the plasma membrane in both a CAAX-dependent and CAAX-independent manner but that PRKL-1 can only inhibit neurite formation in a CAAX-dependent manner.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] rab-27 acts in an intestinal pathway to inhibit axon regeneration in C. elegans
    Lin-Moore, Alexander T.
    Oyeyemi, Motunrayo J.
    Hammarlund, Marc
    PLOS GENETICS, 2021, 17 (11):
  • [2] Planar polarity signaling negatively regulates neurite formation to maintain neuronal morphology in C. elegans
    Visanuvimol, Jiravat
    Sanchez-Alvarez, Leticia
    McEwan, Andrea
    Colavita, Antonio
    DEVELOPMENTAL BIOLOGY, 2011, 356 (01) : 123 - 123
  • [3] Volatile Anesthetics Inhibit Neuronal Regeneration in C. Elegans
    Singaram, Vinod K.
    Wu, Zilu
    Mehta, Meghna
    Schilling, Jan
    Chisholm, Andrew
    Patel, Hemal
    ANESTHESIA AND ANALGESIA, 2017, 124 : 641 - 642
  • [4] PIEZO acts in an intestinal valve to regulate swallowing in C. elegans
    Park, Yeon-Ji
    Yeon, Jihye
    Cho, Jihye
    Kim, Do-Young
    Bai, Xiaofei
    Oh, Yuna
    Kim, Jimin
    Nam, Hojin
    Hwang, Hyeonjeong
    Heo, Woojung
    Kim, Jinmahn
    Jun, Seoyoung
    Lee, Kyungeun
    Kang, Kyeongjin
    Kim, Kyuhyung
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [5] C. elegans colony formation as a condensation phenomenon
    Yuping Chen
    James E. Ferrell
    Nature Communications, 12
  • [6] Genomics approaches to centrosome formation in C. elegans
    Hannak, E
    Kirkham, M
    Müllert-Reichert, T
    Soennichsen, B
    Echeverri, C
    Oegema, K
    Hyman, A
    CELL MOTILITY AND THE CYTOSKELETON, 2003, 54 (02): : 164 - 164
  • [7] C. elegans colony formation as a condensation phenomenon
    Chen, Yuping
    Ferrell, James E., Jr.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [8] Molecular mechanisms of neurite regeneration and repair: insights from C. elegans and Drosophila
    Xiaofan Liu
    Yuqing Zhao
    Wei Zou
    Cell Regeneration, 12
  • [9] Molecular mechanisms of neurite regeneration and repair: insights from C. elegans and Drosophila
    Liu, Xiaofan
    Zhao, Yuqing
    Zou, Wei
    CELL REGENERATION, 2023, 12 (01)
  • [10] Integrin Acts Upstream of Netrin Signaling to Regulate Formation of the Anchor Cell's Invasive Membrane in C. elegans
    Hagedorn, Elliott J.
    Yashiro, Hanako
    Ziel, Joshua W.
    Ihara, Shinji
    Wang, Zheng
    Sherwood, David R.
    DEVELOPMENTAL CELL, 2009, 17 (02) : 187 - 198