Adaptivity and A Posteriori Error Control for Bifurcation Problems I: The Bratu Problem

被引:9
|
作者
Cliffe, K. Andrew [1 ]
Hall, Edward J. C. [1 ]
Houston, Paul [1 ]
Phipps, Eric T. [2 ]
Salinger, Andrew G. [2 ]
机构
[1] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
[2] Sandia Natl Labs, Comp Sci Res Inst, Albuquerque, NM 87185 USA
基金
英国工程与自然科学研究理事会;
关键词
Bifurcation theory; Bratu problem; a posteriori error estimation; adaptivity; discontinuous Galerkin methods; ELLIPTIC EIGENVALUE PROBLEMS; DISCONTINUOUS GALERKIN METHODS; FINITE-ELEMENT APPROXIMATIONS; NUMERICAL COMPUTATION; NONLINEAR PROBLEMS; BRANCH-POINTS; EQUATIONS;
D O I
10.4208/cicp.290709.120210a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This article is concerned with the numerical detection of bifurcation points of nonlinear partial differential equations as some parameter of interest is varied. In particular, we study in detail the numerical approximation of the Bratu problem, based on exploiting the symmetric version of the interior penalty discontinuous Galerkin finite element method. A framework for a posteriori control of the discretization error in the computed critical parameter value is developed based upon the application of the dual weighted residual (DWR) approach. Numerical experiments are presented to highlight the practical performance of the proposed a posteriori error estimator.
引用
收藏
页码:845 / 865
页数:21
相关论文
共 50 条
  • [31] On a posteriori error control for the Allen-Cahn problem
    Georgoulis, Emmanuil H.
    Makridakis, Charalambos
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (02) : 173 - 179
  • [32] A posteriori error estimates for the fractional optimal control problems
    Xingyang Ye
    Chuanju Xu
    Journal of Inequalities and Applications, 2015
  • [33] Pointwise a posteriori error control for elliptic obstacle problems
    Ricardo H. Nochetto
    Kunibert G. Siebert
    Andreas Veeser
    Numerische Mathematik, 2003, 95 : 163 - 195
  • [34] A posteriori error estimates for convex boundary control problems
    Liu, WB
    Yan, NN
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 39 (01) : 73 - 99
  • [35] A posteriori error estimates for semilinear optimal control problems
    Allendes, Alejandro
    Fuica, Francisco
    Otarola, Enrique
    Quero, Daniel
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2021, 55 (05) : 2293 - 2322
  • [36] A posteriori finite element error control for the Laplace problem
    Carstensen, C
    Klose, R
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 25 (03): : 792 - 814
  • [37] A posteriori error estimation and adaptivity for elastoplasticity using the reciprocal theorem
    Cirak, F
    Ramm, E
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2000, 47 (1-3) : 379 - 393
  • [38] A posteriori error estimate and adaptivity for QM/MM models of defects
    Wang, Yangshuai
    Kermode, James R.
    Ortner, Christoph
    Zhang, Lei
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 428
  • [39] A posteriori single- and multi-goal error control and adaptivity for partial differential equations
    Endtmayer, Bernhard
    Langer, Ulrich
    Richter, Thomas
    Schafelner, Andreas
    Wick, Thomas
    Advances in Applied Mechanics, 2024, 59 : 19 - 108
  • [40] A posteriori error estimation and adaptivity for multiple-network poroelasticity
    Eliseussen, Emilie
    Rognes, Marie Elisabeth
    Thompson, Travis B.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2023, 57 (04) : 1921 - 1952