Pointwise a posteriori error control for elliptic obstacle problems

被引:0
|
作者
Ricardo H. Nochetto
Kunibert G. Siebert
Andreas Veeser
机构
[1] University of Maryland,Department of Mathematics and Institute of Physical Science and Technology
[2] Institut für Angewandte Mathematik,Dipartimento di Matematica
[3] Università degli Studi di Milano,undefined
来源
Numerische Mathematik | 2003年 / 95卷
关键词
Finite Element Method; Error Bound; Maximum Norm; Mesh Fineness; Posteriori Error;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a finite element method for the elliptic obstacle problem over polyhedral domains in ℝd, which enforces the unilateral constraint solely at the nodes. We derive novel optimal upper and lower a posteriori error bounds in the maximum norm irrespective of mesh fineness and the regularity of the obstacle, which is just assumed to be Hölder continuous. They exhibit optimal order and localization to the non-contact set. We illustrate these results with simulations in 2d and 3d showing the impact of localization in mesh grading within the contact set along with quasi-optimal meshes.
引用
收藏
页码:163 / 195
页数:32
相关论文
共 50 条