Scaling Limits for Non-intersecting Polymers and Whittaker Measures

被引:7
|
作者
Johnston, Samuel G. G. [1 ]
O'Connell, Neil [2 ]
机构
[1] Karl Franzens Univ Graz, Inst Math & Wissensch Rechnen, A-8010 Graz, Austria
[2] Univ Coll Dublin, Sch Math & Stat, Dublin 4, Ireland
基金
欧洲研究理事会;
关键词
Non-intersecting paths; Polymers; Whittaker measures; Stochastic interfaces;
D O I
10.1007/s10955-020-02534-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the partition functions associated with non-intersecting polymers in a random environment. By considering paths in series and in parallel, the partition functions carry natural notions of subadditivity, allowing the effective study of their asymptotics. For a certain choice of random environment, the geometric RSK correspondence provides an explicit representation of the partition functions in terms of a stochastic interface. Formally this leads to a variational description of the macroscopic behaviour of the interface and hence the free energy of the associated non-intersecting polymer model. At zero temperature we relate this variational description to the Marcenko-Pastur distribution, and give a new derivation of the surface tension of the bead model.
引用
收藏
页码:354 / 407
页数:54
相关论文
共 50 条
  • [21] STATISTICAL-MECHANICS OF NON-INTERSECTING LINE SYSTEMS
    RYS, F
    HELFRICH, W
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (02): : 599 - 603
  • [22] Coxeter polytopes with a unique pair of non-intersecting facets
    Felikson, Anna
    Tumarkin, Pavel
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2009, 116 (04) : 875 - 902
  • [23] Critical resonance in the non-intersecting lattice path model
    Kenyon, RW
    Wilson, DB
    PROBABILITY THEORY AND RELATED FIELDS, 2004, 130 (03) : 289 - 318
  • [24] Multiplicative functionals on ensembles of non-intersecting paths
    Borodin, Alexei
    Corwin, Ivan
    Remenik, Daniel
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2015, 51 (01): : 28 - 58
  • [25] Non-intersecting detours in strong oriented graphs
    van Aardt, Susan
    Semanisin, Gabriel
    UTILITAS MATHEMATICA, 2008, 75 : 159 - 173
  • [26] Restricted maximum of non-intersecting Brownian bridges
    Yalanda, Yamit
    Zalduendo, Nicolas
    ESAIM-PROBABILITY AND STATISTICS, 2024, 28 : 258 - 273
  • [27] Non-intersecting splitting σ-algebras in a non-Bernoulli transformation
    Kalikow, Steven
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2012, 32 : 691 - 705
  • [28] Non-intersecting paths, random tilings and random matrices
    Kurt Johansson
    Probability Theory and Related Fields, 2002, 123 : 225 - 280
  • [29] The trust region subproblem with non-intersecting linear constraints
    Samuel Burer
    Boshi Yang
    Mathematical Programming, 2015, 149 : 253 - 264
  • [30] Non-intersecting Brownian bridges and the Laguerre Orthogonal Ensemble
    Nguyen, Gia Bao
    Remenik, Daniel
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (04): : 2005 - 2029