Non-intersecting splitting σ-algebras in a non-Bernoulli transformation

被引:2
|
作者
Kalikow, Steven [1 ]
机构
[1] Univ Memphis, Dept Math, Memphis, TN 38152 USA
关键词
SCENERY;
D O I
10.1017/S0143385711000034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a measure-preserving transformation T on a Lebesgue sigma-algebra, a complete T-invariant sub-sigma-algebra is said to split if there is another complete T-invariant sub-sigma-algebra on which T is Bernoulli which is completely independent of the given sub-sigma-algebra and such that the two sub-sigma-algebras together generate the entire sigma-algebra. It is easily shown that two splitting sub-sigma-algebras with nothing in common imply T to be K. Here it is shown that T does not have to be Bernoulli by exhibiting two such non-intersecting sigma-algebras for the T, T-1 transformation, negatively answering a question posed by Thouvenot in 1975.
引用
收藏
页码:691 / 705
页数:15
相关论文
共 50 条
  • [1] Non-intersecting complexity
    Belovs, A
    SOFSEM 2006: THEORY AND PRACTICE OF COMPUTER SCIENCE, PROCEEDINGS, 2006, 3831 : 158 - 165
  • [2] On non-intersecting arithmetic progressions
    de la Breteche, Regis
    Ford, Kevin
    Vandehey, Joseph
    ACTA ARITHMETICA, 2013, 157 (04) : 381 - 392
  • [3] On non-intersecting arithmetic progressions
    Croot, ES
    ACTA ARITHMETICA, 2003, 110 (03) : 233 - 238
  • [4] A NON-BERNOULLI SKEW PRODUCT WHICH IS LOOSELY BERNOULLI
    BURTON, RM
    ISRAEL JOURNAL OF MATHEMATICS, 1980, 35 (04) : 339 - 348
  • [5] CROWDED SET OF NON-INTERSECTING LINES
    EIDSWICK, JA
    AMERICAN MATHEMATICAL MONTHLY, 1973, 80 (04): : 415 - 415
  • [6] PAIRS OF NON-INTERSECTING RANDOM FLATS
    AFFENTRANGER, F
    PROBABILITY THEORY AND RELATED FIELDS, 1988, 79 (01) : 47 - 50
  • [7] NON-INTERSECTING ARCS FOR NEARBY POINTS
    UNGAR, P
    AMERICAN MATHEMATICAL MONTHLY, 1972, 79 (05): : 528 - &
  • [8] Non-Bernoulli systems with completely positive entropy
    Dooley, A. H.
    Golodets, V. Ya.
    Rudolph, D. J.
    Sinel'shchikov, S. D.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2008, 28 : 87 - 124
  • [9] SMOOTH NON-BERNOULLI K-AUTOMORPHISMS
    KATOK, A
    INVENTIONES MATHEMATICAE, 1980, 61 (03) : 291 - 299
  • [10] Critical Behavior of Non-intersecting Brownian Motions
    Tom Claeys
    Thorsten Neuschel
    Martin Venker
    Communications in Mathematical Physics, 2020, 378 : 1501 - 1537