Dirac-Weyl Semimetal: Coexistence of Dirac and Weyl Fermions in Polar Hexagonal ABC Crystals

被引:61
|
作者
Gao, Heng [1 ,2 ]
Kim, Youngkuk [2 ,3 ]
Venderbos, Jorn W. F. [2 ,4 ]
Kane, C. L. [4 ]
Mele, E. J. [4 ]
Rappe, Andrew M. [2 ]
Ren, Wei [1 ]
机构
[1] Shanghai Univ, Phys Dept, Shanghai Key Lab High Temp Superconductors, Int Ctr Quantum & Mol Struct,Mat Genome Inst, Shanghai 200444, Peoples R China
[2] Univ Penn, Dept Chem, Philadelphia, PA 19104 USA
[3] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea
[4] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA
基金
美国国家科学基金会; 新加坡国家研究基金会; 中国国家自然科学基金;
关键词
SCHEMES;
D O I
10.1103/PhysRevLett.121.106404
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose that the noncentrosymmetric LiGaGe-type hexagonal ABC crystal SrHgPb realizes a new type of topological semimetal that hosts both Dirac and Weyl points in momentum space. The symmetry protected Dirac points arise due to a band inversion and are located on the sixfold rotation z axis, whereas the six pairs of Weyl points related by sixfold symmetry are located on the perpendicular k(z) = 0 plane. By studying the electronic structure as a function of the buckling of the HgPb layer, which is the origin of inversion symmetry breaking, we establish that the coexistence of Dirac and Weyl fermions defines a phase separating two topologically distinct Dirac semimetals. These two Dirac semimetals arc distinguished by the 72 index of the k(z) = 0 plane and the corresponding presence or absence of 2D Dirac fermions on side surfaces. We formalize our first-principles calculations by deriving and studying a low-energy model Hamiltonian describing the Dirac-Weyl semimetal phase. We conclude by proposing several other materials in the noncentrosymmetric ABC material class, in particular SrHgSn and CaHgSn, as candidates for realizing the Dirac-Weyl semimetal.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] PROPERTIES OF THE DIRAC-WEYL OPERATOR WITH A STRONGLY SINGULAR GAUGE POTENTIAL
    ARAI, A
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (03) : 915 - 935
  • [42] Directly photoexcited Dirac and Weyl fermions in ZrSiS and NbAs
    Weber, Chris P.
    Schoop, Leslie M.
    Parkin, Stuart S. P.
    Newby, Robert C.
    Nateprov, Alex
    Lotsch, Bettina
    Mariserla, Bala Murali Krishna
    Kim, J. Matthew
    Dani, Keshav M.
    Bechtel, Hans A.
    Arushanov, Ernest
    Ali, Mazhar
    [J]. APPLIED PHYSICS LETTERS, 2018, 113 (22)
  • [43] From Multiple Nodal Chain to Dirac/Weyl Semimetal and Topological Insulator in Ternary Hexagonal Materials
    Chen, Cong
    Su, Zefeng
    Zhang, Xiaoming
    Chen, Ziyu
    Sheng, Xian-Lei
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (51): : 28587 - 28593
  • [44] Phenomenology of a semi-Dirac semi-Weyl semimetal
    Banerjee, S.
    Pickett, W. E.
    [J]. PHYSICAL REVIEW B, 2012, 86 (07)
  • [45] Optical response in Weyl semimetal in model with gapped Dirac phase
    Mukherjee, S. P.
    Carbotte, J. P.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (42)
  • [46] Weyl fermions induced magnon electrodynamics in a Weyl semimetal
    Hutasoit, Jimmy A.
    Zang, Jiadong
    Roiban, Radu
    Liu, Chao-Xing
    [J]. PHYSICAL REVIEW B, 2014, 90 (13)
  • [47] Dirac-Weyl equation on a hyperbolic graphene surface under magnetic fields
    Kizilirmak, D. Demir
    Kuru, S.
    Negro, J.
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2020, 118
  • [48] COMPLEXIFIED 2-COMPONENT SPINOR THEORY OF DIRAC-WEYL FIELDS
    CARDOSO, JG
    [J]. PHYSICA SCRIPTA, 1993, 47 (06): : 708 - 711
  • [49] Diverging dc conductivity due to a flat band in a disordered system of pseudospin-1 Dirac-Weyl fermions
    Vigh, Mate
    Oroszlany, Laszlo
    Vajna, Szabolcs
    San-Jose, Pablo
    David, Gyula
    Cserti, Jozsef
    Dora, Balazs
    [J]. PHYSICAL REVIEW B, 2013, 88 (16):
  • [50] Optical properties of two-dimensional Dirac-Weyl materials with a flatband
    Ye, Li-Li
    Han, Chen-Di
    Lai, Ying-Cheng
    [J]. APPLIED PHYSICS LETTERS, 2024, 124 (06)