Dirac-Weyl Semimetal: Coexistence of Dirac and Weyl Fermions in Polar Hexagonal ABC Crystals

被引:61
|
作者
Gao, Heng [1 ,2 ]
Kim, Youngkuk [2 ,3 ]
Venderbos, Jorn W. F. [2 ,4 ]
Kane, C. L. [4 ]
Mele, E. J. [4 ]
Rappe, Andrew M. [2 ]
Ren, Wei [1 ]
机构
[1] Shanghai Univ, Phys Dept, Shanghai Key Lab High Temp Superconductors, Int Ctr Quantum & Mol Struct,Mat Genome Inst, Shanghai 200444, Peoples R China
[2] Univ Penn, Dept Chem, Philadelphia, PA 19104 USA
[3] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea
[4] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA
基金
美国国家科学基金会; 新加坡国家研究基金会; 中国国家自然科学基金;
关键词
SCHEMES;
D O I
10.1103/PhysRevLett.121.106404
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose that the noncentrosymmetric LiGaGe-type hexagonal ABC crystal SrHgPb realizes a new type of topological semimetal that hosts both Dirac and Weyl points in momentum space. The symmetry protected Dirac points arise due to a band inversion and are located on the sixfold rotation z axis, whereas the six pairs of Weyl points related by sixfold symmetry are located on the perpendicular k(z) = 0 plane. By studying the electronic structure as a function of the buckling of the HgPb layer, which is the origin of inversion symmetry breaking, we establish that the coexistence of Dirac and Weyl fermions defines a phase separating two topologically distinct Dirac semimetals. These two Dirac semimetals arc distinguished by the 72 index of the k(z) = 0 plane and the corresponding presence or absence of 2D Dirac fermions on side surfaces. We formalize our first-principles calculations by deriving and studying a low-energy model Hamiltonian describing the Dirac-Weyl semimetal phase. We conclude by proposing several other materials in the noncentrosymmetric ABC material class, in particular SrHgSn and CaHgSn, as candidates for realizing the Dirac-Weyl semimetal.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Nonequilibrium transport in the pseudospin-1 Dirac-Weyl system
    Wang, Cheng-Zhen
    Xu, Hong-Ya
    Huang, Liang
    Lai, Ying-Cheng
    [J]. PHYSICAL REVIEW B, 2017, 96 (11)
  • [32] Anomalous Electromagnetic Field Penetration in a Weyl or Dirac Semimetal
    Sukhachov, P. O.
    Glazman, L., I
    [J]. PHYSICAL REVIEW LETTERS, 2022, 128 (14)
  • [33] Quantum oscillations in Weyl and Dirac semimetal ultrathin films
    Bulmash, Daniel
    Qi, Xiao-Liang
    [J]. PHYSICAL REVIEW B, 2016, 93 (08)
  • [34] The massless Dirac-Weyl equation with deformed extended complex potentials
    Yesiltas, Ozlem
    Cagatay, Bengu
    [J]. CANADIAN JOURNAL OF PHYSICS, 2018, 96 (07) : 770 - 773
  • [35] Optical conductivity of tilted higher pseudospin Dirac-Weyl cones
    Wareham, W. Callum
    Nicol, E.J.
    [J]. Physical Review B, 2023, 108 (08)
  • [36] Spin susceptibility of three-dimensional Dirac-Weyl semimetals
    Ominato, Yuya
    Nomura, Kentaro
    [J]. PHYSICAL REVIEW B, 2018, 97 (24)
  • [37] Supersymmetric analysis of the Dirac-Weyl operator within PT symmetry
    Yesiltas, Ozlem
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (08)
  • [38] Out-of-time-ordered commutators in Dirac-Weyl systems
    Okvatovity, Z.
    Dora, B.
    [J]. PHYSICAL REVIEW B, 2020, 101 (24)
  • [39] Bloch-Siegert Shift in Dirac-Weyl Fermionic Systems
    Kumar, Upendra
    Kumar, Vipin
    Enamullah
    Setlur, Girish S.
    [J]. 62ND DAE SOLID STATE PHYSICS SYMPOSIUM, 2018, 1942
  • [40] Magneto-optics of general pseudospin-s two-dimensional Dirac-Weyl fermions
    Malcolm, J. D.
    Nicol, E. J.
    [J]. PHYSICAL REVIEW B, 2014, 90 (03)