Dirac-Weyl Semimetal: Coexistence of Dirac and Weyl Fermions in Polar Hexagonal ABC Crystals

被引:61
|
作者
Gao, Heng [1 ,2 ]
Kim, Youngkuk [2 ,3 ]
Venderbos, Jorn W. F. [2 ,4 ]
Kane, C. L. [4 ]
Mele, E. J. [4 ]
Rappe, Andrew M. [2 ]
Ren, Wei [1 ]
机构
[1] Shanghai Univ, Phys Dept, Shanghai Key Lab High Temp Superconductors, Int Ctr Quantum & Mol Struct,Mat Genome Inst, Shanghai 200444, Peoples R China
[2] Univ Penn, Dept Chem, Philadelphia, PA 19104 USA
[3] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea
[4] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA
基金
美国国家科学基金会; 新加坡国家研究基金会; 中国国家自然科学基金;
关键词
SCHEMES;
D O I
10.1103/PhysRevLett.121.106404
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose that the noncentrosymmetric LiGaGe-type hexagonal ABC crystal SrHgPb realizes a new type of topological semimetal that hosts both Dirac and Weyl points in momentum space. The symmetry protected Dirac points arise due to a band inversion and are located on the sixfold rotation z axis, whereas the six pairs of Weyl points related by sixfold symmetry are located on the perpendicular k(z) = 0 plane. By studying the electronic structure as a function of the buckling of the HgPb layer, which is the origin of inversion symmetry breaking, we establish that the coexistence of Dirac and Weyl fermions defines a phase separating two topologically distinct Dirac semimetals. These two Dirac semimetals arc distinguished by the 72 index of the k(z) = 0 plane and the corresponding presence or absence of 2D Dirac fermions on side surfaces. We formalize our first-principles calculations by deriving and studying a low-energy model Hamiltonian describing the Dirac-Weyl semimetal phase. We conclude by proposing several other materials in the noncentrosymmetric ABC material class, in particular SrHgSn and CaHgSn, as candidates for realizing the Dirac-Weyl semimetal.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Dirac-Weyl semimetal in photonic metacrystals
    Long, Sheng
    Yang, Jie
    Wang, Hanyu
    Yu, Zhide
    Yang, Biao
    Guo, Qinghua
    Xiang, Yuanjiang
    Xia, Lingbo
    Zhang, Shuang
    [J]. OPTICS LETTERS, 2023, 48 (09) : 2349 - 2352
  • [2] Unconventional Dirac-Weyl semimetal with ultralong surface arc in phononic crystals
    Wu, Peng
    Gao, Feng
    Xiang, Xiao
    Zheng, Chen
    Peng, Yu-Gui
    Zhu, Xue-Feng
    [J]. PHYSICAL REVIEW B, 2024, 110 (09)
  • [3] Intertwined Rashba, Dirac, and Weyl Fermions in Hexagonal Hyperferroelectrics
    Di Sante, Domenico
    Barone, Paolo
    Stroppa, Alessandro
    Garrity, Kevin F.
    Vanderbilt, David
    Picozzi, Silvia
    [J]. PHYSICAL REVIEW LETTERS, 2016, 117 (07)
  • [4] Mirror Protected Dirac Fermions on a Weyl Semimetal NbP Surface
    Zheng, Hao
    Chang, Guoqing
    Huang, Shin-Ming
    Guo, Cheng
    Zhang, Xiao
    Zhang, Songtian
    Yin, Jiaxin
    Xu, Su-Yang
    Belopolski, Ilya
    Alidoust, Nasser
    Sanchez, Daniel S.
    Bian, Guang
    Chang, Tay-Rong
    Neupert, Titus
    Jeng, Horng-Tay
    Jia, Shuang
    Lin, Hsin
    Hasan, M. Zahid
    [J]. PHYSICAL REVIEW LETTERS, 2017, 119 (19)
  • [5] Spin-1 Dirac-Weyl fermions protected by bipartite symmetry
    Lin, Zeren
    Liu, Zhirong
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (21):
  • [6] Plasmon signature in Dirac-Weyl liquids
    Hofmann, Johannes
    Das Sarma, S.
    [J]. PHYSICAL REVIEW B, 2015, 91 (24)
  • [7] Huygens' principle and Dirac-Weyl equation
    Pascazio, Saverio
    Pepe, Francesco V.
    Perez-Pardo, Juan Manuel
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (06):
  • [8] Dirac, Majorana, and Weyl fermions
    Pal, Palash B.
    [J]. AMERICAN JOURNAL OF PHYSICS, 2011, 79 (05) : 485 - 498
  • [9] Massless Dirac-Weyl fermions in a T3 optical lattice
    Bercioux, D.
    Urban, D. F.
    Grabert, H.
    Haeusler, W.
    [J]. PHYSICAL REVIEW A, 2009, 80 (06):
  • [10] Huygens’ principle and Dirac-Weyl equation
    Saverio Pascazio
    Francesco V. Pepe
    Juan Manuel Pérez-Pardo
    [J]. The European Physical Journal Plus, 132