INVESTIGATING GENERALIZED QUATERNIONS WITH DUAL-GENERALIZED COMPLEX NUMBERS

被引:0
|
作者
Gurses, Nurten [1 ]
Senturk, Gulsum Yeliz [2 ]
Yuce, Salim [1 ]
机构
[1] Yildiz Tech Univ, Fac Arts & Sci, Dept Math, TR-34220 Istanbul, Turkey
[2] Istanbul Gelisim Univ, Fac Engn & Architecture, Dept Comp Engn, TR-34310 Istanbul, Turkey
来源
MATHEMATICA BOHEMICA | 2020年 / 148卷 / 03期
关键词
generalized quaternion; dual-generalized complex number; matrix representation;
D O I
10.21136/MB.2022.0096-21
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We aim to introduce generalized quaternions with dual-generalized complex number coefficients for all real values alpha, beta and p. Furthermore, the algebraic structures, properties and matrix forms are expressed as generalized quaternions and dual-generalized complex numbers. Finally, based on their matrix representations, the multiplication of these quaternions is restated and numerical examples are given.
引用
收藏
页码:329 / 348
页数:20
相关论文
共 50 条
  • [21] Similarity and consimilarity of hyper-dual generalized quaternions
    Alagoz, Yasemin
    Ozyurt, Gozde
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (03) : 3337 - 3350
  • [22] Fibonacci Generalized Quaternions
    Akyigit, Mahmut
    Kosal, Hidayet Huda
    Tosun, Murat
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2014, 24 (03) : 631 - 641
  • [23] Fibonacci Generalized Quaternions
    Mahmut Akyig̃it
    Hidayet Hüda Kösal
    Murat Tosun
    Advances in Applied Clifford Algebras, 2014, 24 : 631 - 641
  • [24] On generalized Pentanacci quaternions
    Soykan, Yuksel
    Ozmen, Nejla
    Gocen, Melih
    TBILISI MATHEMATICAL JOURNAL, 2020, 13 (04) : 169 - 181
  • [25] On dual hyperbolic generalized Fibonacci numbers
    Yüksel Soykan
    Indian Journal of Pure and Applied Mathematics, 2021, 52 : 62 - 78
  • [26] On dual hyperbolic generalized Fibonacci numbers
    Soykan, Yuksel
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2021, 52 (01): : 62 - 78
  • [27] On dual hyperbolic numbers with generalized Jacobsthal numbers components
    Yüksel Soykan
    Erkan Taşdemir
    İnci Okumuş
    Indian Journal of Pure and Applied Mathematics, 2023, 54 : 824 - 840
  • [28] On dual hyperbolic numbers with generalized Jacobsthal numbers components
    Soykan, Yuksel
    Tasdemir, Erkan
    Okumus, Inci
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (03): : 824 - 840
  • [29] On Generalized Bell Numbers for Complex Argument
    Corcino, Roberto B.
    Montero, Maribeth B.
    Corcino, Cristina B.
    UTILITAS MATHEMATICA, 2012, 88 : 267 - 279
  • [30] Chebyshev Polynomials and Generalized Complex Numbers
    D. Babusci
    G. Dattoli
    E. Di Palma
    E. Sabia
    Advances in Applied Clifford Algebras, 2014, 24 : 1 - 10