Fibonacci Generalized Quaternions

被引:0
|
作者
Mahmut Akyig̃it
Hidayet Hüda Kösal
Murat Tosun
机构
[1] Sakarya University,Faculy of Arts and Sciences, Department of Mathematics
来源
关键词
Fibonacci and Lucas numbers; Generalized quaternions; Fibonacci and Lucas Generalized quaternions;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the Fibonacci generalized quaternions are introduced. We use the well-known identities related to the Fibonacci and Lucas numbers to obtain the relations regarding these quaternions. Furthermore, the Fibonacci generalized quaternions are classified by considering the special cases of quaternionic units.
引用
收藏
页码:631 / 641
页数:10
相关论文
共 50 条
  • [1] On Generalized Fibonacci Quaternions and Fibonacci-Narayana Quaternions
    Flaut, Cristina
    Shpakivskyi, Vitalii
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2013, 23 (03) : 673 - 688
  • [2] On Generalized Fibonacci Quaternions and Fibonacci-Narayana Quaternions
    Cristina Flaut
    Vitalii Shpakivskyi
    [J]. Advances in Applied Clifford Algebras, 2013, 23 : 673 - 688
  • [3] Fibonacci Generalized Quaternions
    Akyigit, Mahmut
    Kosal, Hidayet Huda
    Tosun, Murat
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2014, 24 (03) : 631 - 641
  • [4] Generalized Dual Fibonacci Quaternions
    Yuce, Salim
    Aydin, Fugen Torunbalci
    [J]. APPLIED MATHEMATICS E-NOTES, 2016, 16 : 276 - 289
  • [5] Generalized commutative quaternions of the Fibonacci type
    Szynal-Liana, Anetta
    Wloch, Iwona
    [J]. BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (01):
  • [6] MODIFIED GENERALIZED FIBONACCI AND LUCAS QUATERNIONS
    Kome, Sure
    Kome, Cahit
    Yazlik, Yasin
    [J]. JOURNAL OF SCIENCE AND ARTS, 2019, (01): : 49 - 60
  • [7] Generalized commutative quaternions of the Fibonacci type
    Anetta Szynal-Liana
    Iwona Włoch
    [J]. Boletín de la Sociedad Matemática Mexicana, 2022, 28
  • [8] A Clifford algebra associated to generalized Fibonacci quaternions
    Flaut, Cristina
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [9] On quaternions with generalized Fibonacci and Lucas number components
    Polatli, Emrah
    Kesim, Seyhun
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [10] Generalized dual Fibonacci quaternions with dual coefficient
    Aydin, Fugen Torunbalci
    [J]. NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2018, 24 (04) : 70 - 85