Quantifying heterogeneity in individual participant data meta-analysis with binary outcomes

被引:79
|
作者
Chen, Bo [1 ]
Benedetti, Andrea [1 ,2 ]
机构
[1] McGill Univ, Dept Epidemiol Biostat & Occupat Hlth, Purvis Hall,1020 Pine Ave West, Montreal, PQ, Canada
[2] McGill Univ, Resp Epidemiol & Clin Res Unit, 2155 Guy St 4th Floor,Off 412,24105, Montreal, PQ, Canada
基金
加拿大健康研究院;
关键词
Individual participant datameta-analysis (IPD-MA); Heterogeneity; Two-stage and one-stage approaches; I-2; LINEAR MIXED MODELS; INTRACLASS CORRELATION; PATIENT DATA;
D O I
10.1186/s13643-017-0630-4
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: In meta-analyses (MA), effect estimates that are pooled together will often be heterogeneous. Determining how substantial heterogeneity is is an important aspect of MA. Method: We consider how best to quantify heterogeneity in the context of individual participant data meta-analysis (IPD-MA) of binary data. Both two-and one-stage approaches are evaluated via simulation study. We consider conventional I-2 and R-2 statistics estimated via a two-stage approach and R-2 estimated via a one-stage approach. We propose a simulation-based intraclass correlation coefficient (ICC) adapted from Goldstein et al. to estimate the I-2, from the one-stage approach. Results: Results show that when there is no effect modification, the estimated I-2 from the two-stage model is underestimated, while in the one-stage model, it is overestimated. In the presence of effect modification, the estimated I-2 from the one-stage model has better performance than that from the two-stage model when the prevalence of the outcome is high. The I-2 from the two-stage model is less sensitive to the strength of effect modification when the number of studies is large and prevalence is low. Conclusions: The simulation-based I-2 based on a one-stage approach has better performance than the conventional I-2 based on a two-stage approach when there is strong effect modification with high prevalence.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Malaria, malnutrition, and birthweight: A meta-analysis using individual participant data
    Cates, Jordan E.
    Unger, Holger W.
    Briand, Valerie
    Fievet, Nadine
    Valea, Innocent
    Tinto, Halidou
    D'Alessandro, Umberto
    Landis, Sarah H.
    Adu-Afarwuah, Seth
    Dewey, Kathryn G.
    Ter Kuile, Feiko O.
    Desai, Meghna
    Dellicour, Stephanie
    Ouma, Peter
    Gutman, Julie
    Oneko, Martina
    Slutsker, Laurence
    Terlouw, Dianne J.
    Kariuki, Simon
    Ayisi, John
    Madanitsa, Mwayiwawo
    Mwapasa, Victor
    Ashorn, Per
    Maleta, Kenneth
    Mueller, Ivo
    Stanisic, Danielle
    Schmiegelow, Christentze
    Lusingu, John P. A.
    van Eijk, Anna Maria
    Bauserman, Melissa
    Adair, Linda
    Cole, Stephen R.
    Westreich, Daniel
    Meshnick, Steven
    Rogerson, Stephen
    PLOS MEDICINE, 2017, 14 (08)
  • [42] Duration of Breastfeeding and Risk of SIDS: An Individual Participant Data Meta-analysis
    Thompson, John M. D.
    Tanabe, Kawai
    Moon, Rachel Y.
    Mitchell, Edwin A.
    McGarvey, Cliona
    Tappin, David
    Blair, Peter S.
    Hauck, Fern R.
    PEDIATRICS, 2017, 140 (05)
  • [43] Antihypertensive treatment and risk of cancer: an individual participant data meta-analysis
    Copland, Emma
    Canoy, Dexter
    Nazarzadeh, Milad
    Bidel, Zeinab
    Ramakrishnan, Rema
    Woodward, Mark
    Chalmers, John
    Teo, Koon K.
    Pepine, Carl J.
    Davis, Barry R.
    Kjeldsen, Sverre
    Sundstrom, Johan
    Rahimi, Kazem
    LANCET ONCOLOGY, 2021, 22 (04): : 558 - 570
  • [44] Challenges In Performing An Individual Participant-level Data Meta-analysis
    van der Worp, Henk
    Holtman, Gea A.
    Blanker, Marco H.
    EUROPEAN UROLOGY FOCUS, 2023, 9 (05): : 705 - 707
  • [45] Hydroxychloroquine in the pregnancies of women with lupus: a meta-analysis of individual participant data
    Clowse, Megan E. B.
    Eudy, Amanda M.
    Balevic, Stephen
    Sanders-Schmidler, Gillian
    Kosinski, Andrzej
    Fischer-Betz, Rebecca
    Gladman, Dafna D.
    Molad, Yair
    Nalli, Cecilia
    Mokbel, Abir
    Tincani, Angela
    Urowitz, Murray
    Bay, Caroline
    van Noord, Megan
    Petri, Michelle
    LUPUS SCIENCE & MEDICINE, 2022, 9 (01):
  • [46] ASSOCIATION OF INTRAVENTRICULAR FIBRINOLYSIS WITH CLINICAL OUTCOMES IN PATIENTS WITH INTRACEREBRAL HEMORRHAGE: AN INDIVIDUAL PARTICIPANT DATA META-ANALYSIS
    Kuramatsu, Joji
    JOURNAL OF NEUROTRAUMA, 2022, 39 (11-12) : A51 - A51
  • [47] Estimated Glomerular Filtration Rate, Albuminuria, and Adverse Outcomes An Individual-Participant Data Meta-Analysis
    Grams, Morgan E.
    Coresh, Josef
    Matsushita, Kunihiro
    Ballew, Shoshana H.
    Sang, Yingying
    Surapaneni, Aditya
    de Pinho, Natalia Alencar
    Anderson, Amanda
    Appel, Lawrence J.
    Arnlov, Johan
    Azizi, Fereidoun
    Bansal, Nisha
    Bell, Samira
    Bilo, Henk J. G.
    Brunskill, Nigel J.
    Carrero, Juan J.
    Chadban, Steve
    Chalmers, John
    Chen, Jing
    Ciemins, Elizabeth
    Cirillo, Massimo
    Ebert, Natalie
    Evans, Marie
    Ferreiro, Alejandro
    Fu, Edouard L.
    Fukagawa, Masafumi
    Green, Jamie A.
    Gutierrez, Orlando M.
    Herrington, William G.
    Hwang, Shih-Jen
    Inker, Lesley A.
    Iseki, Kunitoshi
    Jafar, Tazeen
    Jassal, Simerjot K.
    Jha, Vivekanand
    Kadota, Aya
    Katz, Ronit
    Koettgen, Anna
    Konta, Tsuneo
    Kronenberg, Florian
    Lee, Brian J.
    Lees, Jennifer
    Levin, Adeera
    Looker, Helen C.
    Major, Rupert
    Cohen, Cheli Melzer
    Mieno, Makiko
    Miyazaki, Mariko
    Moranne, Olivier
    Muraki, Isao
    JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2023, 330 (13): : 1266 - 1277
  • [48] ASSOCIATION OF INTRAVENTRICULAR FIBRINOLYSIS WITH CLINICAL OUTCOMES IN PATIENTS WITH INTRACEREBRAL HEMORRHAGE: AN INDIVIDUAL PARTICIPANT DATA META-ANALYSIS
    Kuramatsu, J.
    Gerner, S.
    Ziai, W.
    Schwab, S.
    Hanley, D.
    Huttner, H.
    INTERNATIONAL JOURNAL OF STROKE, 2022, 17 (3_SUPPL) : 67 - 67
  • [49] Calculating the power of a planned individual participant data meta-analysis to examine prognostic factor effects for a binary outcome
    Whittle, Rebecca
    Ensor, Joie
    Hattle, Miriam
    Dhiman, Paula
    Collins, Gary S.
    Riley, Richard D.
    RESEARCH SYNTHESIS METHODS, 2024,
  • [50] One-stage individual participant data meta-analysis models for continuous and binary outcomes: Comparison of treatment coding options and estimation methods
    Riley, Richard D.
    Legha, Amardeep
    Jackson, Dan
    Morris, Tim P.
    Ensor, Joie
    Snell, Kym I. E.
    White, Ian R.
    Burke, Danielle L.
    STATISTICS IN MEDICINE, 2020, 39 (19) : 2536 - 2555