Quantifying heterogeneity in individual participant data meta-analysis with binary outcomes

被引:79
|
作者
Chen, Bo [1 ]
Benedetti, Andrea [1 ,2 ]
机构
[1] McGill Univ, Dept Epidemiol Biostat & Occupat Hlth, Purvis Hall,1020 Pine Ave West, Montreal, PQ, Canada
[2] McGill Univ, Resp Epidemiol & Clin Res Unit, 2155 Guy St 4th Floor,Off 412,24105, Montreal, PQ, Canada
基金
加拿大健康研究院;
关键词
Individual participant datameta-analysis (IPD-MA); Heterogeneity; Two-stage and one-stage approaches; I-2; LINEAR MIXED MODELS; INTRACLASS CORRELATION; PATIENT DATA;
D O I
10.1186/s13643-017-0630-4
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: In meta-analyses (MA), effect estimates that are pooled together will often be heterogeneous. Determining how substantial heterogeneity is is an important aspect of MA. Method: We consider how best to quantify heterogeneity in the context of individual participant data meta-analysis (IPD-MA) of binary data. Both two-and one-stage approaches are evaluated via simulation study. We consider conventional I-2 and R-2 statistics estimated via a two-stage approach and R-2 estimated via a one-stage approach. We propose a simulation-based intraclass correlation coefficient (ICC) adapted from Goldstein et al. to estimate the I-2, from the one-stage approach. Results: Results show that when there is no effect modification, the estimated I-2 from the two-stage model is underestimated, while in the one-stage model, it is overestimated. In the presence of effect modification, the estimated I-2 from the one-stage model has better performance than that from the two-stage model when the prevalence of the outcome is high. The I-2 from the two-stage model is less sensitive to the strength of effect modification when the number of studies is large and prevalence is low. Conclusions: The simulation-based I-2 based on a one-stage approach has better performance than the conventional I-2 based on a two-stage approach when there is strong effect modification with high prevalence.
引用
下载
收藏
页数:9
相关论文
共 50 条
  • [31] Highlighting the Benefits and Disadvantages of Individual Participant Data Meta-Analysis in Radiology
    Costa, Andre L. F.
    Lopes, Sergio L. P. C.
    RADIOLOGY-IMAGING CANCER, 2024, 6 (02):
  • [32] Meta-analysis of prognostic and predictive factors: Towards individual participant data?
    Faron, Matthieu
    Pignon, Jean-Pierre
    Paoletti, Xavier
    EUROPEAN JOURNAL OF CANCER, 2018, 104 : 224 - 226
  • [33] Callosotomy affects performance IQ: A meta-analysis of individual participant data
    Westerhausen, Rene
    Karud, Celine M. R.
    NEUROSCIENCE LETTERS, 2018, 665 : 43 - 47
  • [34] Using individual participant data to improve network meta-analysis projects
    Riley, Richard D.
    Dias, Sofia
    Donegan, Sarah
    Tierney, Jayne F.
    Stewart, Lesley A.
    Efthimiou, Orestis
    Phillippo, David M.
    BMJ EVIDENCE-BASED MEDICINE, 2023, 28 (03) : 197 - 203
  • [35] Combining individual participant and aggregated data in a meta-analysis with correlational studies
    Pigott, Terri
    Williams, Ryan
    Polanin, Joshua
    RESEARCH SYNTHESIS METHODS, 2012, 3 (04) : 257 - 268
  • [36] Commentary: Like it and lump it? Meta-analysis using individual participant data
    Riley, Richard D.
    INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2010, 39 (05) : 1359 - 1361
  • [37] Depression, anxiety, and the risk of cancer: An individual participant data meta-analysis
    van Tuijl, Lonneke A.
    Basten, Maartje
    Pan, Kuan-Yu
    Vermeulen, Roel
    Portengen, Luetzen
    de Graeff, Alexander
    Dekker, Joost
    Geerlings, Mirjam I.
    Hoogendoorn, Adriaan
    Lamers, Femke
    Voogd, Adri C.
    Abell, Jessica
    Awadalla, Philip
    Beekman, Aartjan T. F.
    Bjerkeset, Ottar
    Boyd, Andy
    Cui, Yunsong
    Frank, Philipp
    Galenkamp, Henrike
    Garssen, Bert
    Hellingman, Sean
    Huisman, Martijn
    Huss, Anke
    de Jong, Trynke R.
    Keats, Melanie R.
    Kok, Almar A. L.
    Krokstad, Steinar
    van Leeuwen, Flora E.
    Luik, Annemarie I.
    Noisel, Nolwenn
    Onland-Moret, N. Charlotte
    Payette, Yves
    Penninx, Brenda W. J. H.
    Rissanen, Ina
    Roest, Annelieke M.
    Ruiter, Rikje
    Schoevers, Robert A.
    Soave, David
    Spaan, Mandy
    Steptoe, Andrew
    Stronks, Karien
    Sund, Erik R.
    Sweeney, Ellen
    Twait, Emma L.
    Teyhan, Alison
    Verschuren, W. M. Monique
    van der Willik, Kimberly D.
    Rosmalen, Judith G. M.
    Ranchor, Adelita V.
    CANCER, 2023, 129 (20) : 3287 - 3299
  • [38] Job insecurity and risk of diabetes: a meta-analysis of individual participant data
    Ferrie, Jane E.
    Virtanen, Marianna
    Jokela, Markus
    Madsen, Ida E. H.
    Heikkila, Katriina
    Alfredsson, Lars
    Batty, G. David
    Bjorner, Jakob B.
    Borritz, Marianne
    Burr, Hermann
    Dragano, Nico
    Elovainio, Marko
    Fransson, Eleonor I.
    Knutsson, Anders
    Koskenvuo, Markku
    Koskinen, Aki
    Kouvonen, Anne
    Kumari, Meena
    Nielsen, Martin L.
    Nordin, Maria
    Oksanen, Tuula
    Pahkin, Krista
    Pejtersen, Jan H.
    Pentti, Jaana
    Salo, Paula
    Shipley, Martin J.
    Suominen, Sakari B.
    Tabak, Adam
    Theorell, Toeres
    Vaananen, Ari
    Vahtera, Jussi
    Westerholm, Peter J. M.
    Westerlund, Hugo
    Rugulies, Reiner
    Nyberg, Solja T.
    Kivimaki, Mika
    CANADIAN MEDICAL ASSOCIATION JOURNAL, 2016, 188 (17-18) : E447 - E455
  • [39] Breastfeeding and handedness: a systematic review and meta-analysis of individual participant data
    Hujoel, Philippe P.
    LATERALITY, 2019, 24 (05): : 582 - 599
  • [40] Testosterone, SHBG and the metabolic syndrome: an individual participant data meta-analysis
    Brand, J. S.
    Rovers, M. M.
    van der Schouw, Y. T.
    DIABETOLOGIA, 2011, 54 : S219 - S219