Sparse permutation invariant covariance estimation

被引:523
|
作者
Rothman, Adam J. [1 ]
Bickel, Peter J. [2 ]
Levina, Elizaveta [1 ]
Zhu, Ji [1 ]
机构
[1] Univ Michigan, Ann Arbor, MI 48109 USA
[2] Univ Calif Berkeley, Berkeley, CA 94720 USA
来源
基金
美国国家科学基金会;
关键词
Covariance matrix; High dimension low sample size; large p small n; Lasso; Sparsity; Cholesky decomposition;
D O I
10.1214/08-EJS176
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The paper proposes a method for constructing a sparse estimator for the inverse covariance (concentration) matrix in high-dimensional settings. The estimator uses a penalized normal likelihood approach and forces sparsity by using a lasso-type penalty. We establish a rate of convergence in the Frobenius norm as both data dimension p and sample size n are allowed to grow, and show that the rate depends explicitly on how sparse the true concentration matrix is. We also show that a correlation-based version of the method exhibits better rates in the operator norm. We also derive a fast iterative algorithm for computing the estimator, which relies on the popular Cholesky decomposition of the inverse but produces a permutation-invariant estimator. The method is compared to other estimators on simulated data and on a real data example of tumor tissue classification using gene expression data.
引用
收藏
页码:494 / 515
页数:22
相关论文
共 50 条
  • [1] Sparse estimation of a covariance matrix
    Bien, Jacob
    Tibshirani, Robert J.
    [J]. BIOMETRIKA, 2011, 98 (04) : 807 - 820
  • [2] Sparse Steinian Covariance Estimation
    Naul, Brett
    Taylor, Jonathan
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2017, 26 (02) : 355 - 366
  • [3] Marginal permutation invariant covariance matrices with applications to linear models
    Nahtman, Tatjana
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 417 (01) : 183 - 210
  • [4] ESTIMATION OF FUNCTIONALS OF SPARSE COVARIANCE MATRICES
    Fan, Jianqing
    Rigollet, Philippe
    Wang, Weichen
    [J]. ANNALS OF STATISTICS, 2015, 43 (06): : 2706 - 2737
  • [5] Sparse covariance estimation in heterogeneous samples
    Rodriguez, Abel
    Lenkoski, Alex
    Dobra, Adrian
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2011, 5 : 981 - 1014
  • [6] Estimation of a sparse and spiked covariance matrix
    Lian, Heng
    Fan, Zengyan
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2015, 27 (02) : 241 - 252
  • [7] Sparse Multivariate Regression With Covariance Estimation
    Rothman, Adam J.
    Levina, Elizaveta
    Zhu, Ji
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2010, 19 (04) : 947 - 962
  • [8] ON lq ESTIMATION OF SPARSE INVERSE COVARIANCE
    Marjanovic, Goran
    Hero, Alfred O.
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [9] Sparse Covariance Estimation Based on Sparse-Graph Codes
    Pedarsani, Ramtin
    Lee, Kangwook
    Ramchandran, Kannan
    [J]. 2015 53RD ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2015, : 612 - 619
  • [10] Fast algorithms for sparse inverse covariance estimation
    Xu, Fangfang
    Deng, Ruiyang
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (08) : 1668 - 1686