MULTI-GPU DGEMM AND HIGH PERFORMANCE LINPACK ON HIGHLY ENERGY-EFFICIENT CLUSTERS

被引:4
|
作者
Rohr, David [1 ]
Bach, Matthias [1 ]
Kretz, Matthias [1 ]
Lindenstruth, Volker [1 ]
机构
[1] Goethe Univ Frankfurt, Frankfurt Inst Adv Studies, D-60438 Frankfurt, Germany
关键词
DGEMM; double-precision general matrix multiply; GPGPU; Green IT; heterogeneous (hybrid) systems; High Performance Linpack; HPL; multi-GPU; system architecture;
D O I
10.1109/MM.2011.66
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
High Performance Linpack can maximize requirements throughout a computer system. An efficient multi-GPU double-precision general matrix multiply (DGEMM), together with adjustments to the HPL, is required to utilize a heterogeneous computer to its full extent. The authors present the resulting energy-efficiency measurements and suggest a cluster design that can utilize multiple GPUs. © 2011 IEEE.
引用
收藏
页码:18 / 26
页数:9
相关论文
共 50 条
  • [41] New multi-GPU implementation for smoothed particle hydrodynamics on heterogeneous clusters
    Dominguez, J. M.
    Crespo, A. J. C.
    Valdez-Balderas, D.
    Rogers, B. D.
    Gomez-Gesteira, M.
    COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (08) : 1848 - 1860
  • [42] Efficient Multi-GPU Memory Management for Deep Learning Acceleration
    Kim, Youngrang
    Lee, Jaehwan
    Kim, Jik-Soo
    Jei, Hyunseung
    Roh, Hongchan
    2018 IEEE 3RD INTERNATIONAL WORKSHOPS ON FOUNDATIONS AND APPLICATIONS OF SELF* SYSTEMS (FAS*W), 2018, : 37 - 43
  • [43] An efficient scheme for multi-GPU TTI reverse time migration
    Liu Guo-Feng
    Meng Xiao-Hong
    Yu Zhen-Jiang
    Liu Ding-Jin
    APPLIED GEOPHYSICS, 2019, 16 (01) : 56 - 63
  • [44] An efficient parallel collaborative filtering algorithm on multi-GPU platform
    Wang, Zhongya
    Liu, Ying
    Chiu, Steve
    JOURNAL OF SUPERCOMPUTING, 2016, 72 (06): : 2080 - 2094
  • [45] Solving incompressible two-phase flows on multi-GPU clusters
    Zaspel, P. (zaspel@ins.uni-bonn.de), 1600, Elsevier Ltd (80):
  • [46] A multi-GPU protein database search model with hybrid alignment manner on distributed GPU clusters
    Zhou, Wei
    Cai, Zhanxiu
    Lian, Bo
    Wang, Jincai
    Ma, Jianping
    Sun, Bin
    Yu, Qian
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2018, 30 (18):
  • [47] Towards High-Performance Code Generation for Multi-GPU Clusters Based on a Domain-Specific Language for Algorithmic Skeletons
    Wrede, Fabian
    Kuchen, Herbert
    INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING, 2020, 48 (04) : 713 - 728
  • [48] GPU-NEST: Characterizing Energy Efficiency of Multi-GPU Inference Servers
    Jahanshahi, Ali
    Sabzi, Hadi Zamani
    Lau, Chester
    Wong, Daniel
    IEEE COMPUTER ARCHITECTURE LETTERS, 2020, 19 (02) : 139 - 142
  • [49] Efficient model of tumor dynamics simulated in multi-GPU environment
    Klusek, Adrian
    Los, Marcin
    Paszynski, Maciej
    Dzwinel, Witold
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2019, 33 (03): : 489 - 506
  • [50] An efficient parallel collaborative filtering algorithm on multi-GPU platform
    Zhongya Wang
    Ying Liu
    Steve Chiu
    The Journal of Supercomputing, 2016, 72 : 2080 - 2094