MULTI-GPU DGEMM AND HIGH PERFORMANCE LINPACK ON HIGHLY ENERGY-EFFICIENT CLUSTERS

被引:4
|
作者
Rohr, David [1 ]
Bach, Matthias [1 ]
Kretz, Matthias [1 ]
Lindenstruth, Volker [1 ]
机构
[1] Goethe Univ Frankfurt, Frankfurt Inst Adv Studies, D-60438 Frankfurt, Germany
关键词
DGEMM; double-precision general matrix multiply; GPGPU; Green IT; heterogeneous (hybrid) systems; High Performance Linpack; HPL; multi-GPU; system architecture;
D O I
10.1109/MM.2011.66
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
High Performance Linpack can maximize requirements throughout a computer system. An efficient multi-GPU double-precision general matrix multiply (DGEMM), together with adjustments to the HPL, is required to utilize a heterogeneous computer to its full extent. The authors present the resulting energy-efficiency measurements and suggest a cluster design that can utilize multiple GPUs. © 2011 IEEE.
引用
收藏
页码:18 / 26
页数:9
相关论文
共 50 条
  • [31] Exploiting heterogeneity of communication channels for efficient GPU selection on multi-GPU nodes
    Faraji, Iman
    Mirsadeghi, Seyed H.
    Afsahi, Ahmad
    PARALLEL COMPUTING, 2017, 68 : 3 - 16
  • [32] Statistical Power and Energy Modeling of Multi-GPU kernels
    Ghosh, Sayan
    Chandrasekaran, Sunita
    Chapman, Barbara M.
    2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC), 2012, : 1516 - 1516
  • [33] Performance Optimization of Allreduce Operation for Multi-GPU Systems
    Nukada, Akira
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 3107 - 3112
  • [34] Two-stage Asynchronous Iterative Solvers for multi-GPU Clusters
    Nayak, Pratik
    Cojean, Terry
    Anzt, Hartwig
    PROCEEDINGS OF SCALA 2020: 11TH WORKSHOP ON LATEST ADVANCES IN SCALABLE ALGORITHMS FOR LARGE-SCALE SYSTEMS, 2020, : 9 - 18
  • [35] High Performance Multi-GPU SpMV for Multi-component PDE-Based Applications
    Abdelfattah, Ahmad
    Ltaief, Hatem
    Keyes, David
    EURO-PAR 2015: PARALLEL PROCESSING, 2015, 9233 : 601 - 612
  • [36] Multi-GPU Efficient Indexing For Maximizing Parallelism of High Dimensional Range Query Services
    Kim, Mincheol
    Liu, Ling
    Choi, Wonik
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2022, 15 (05) : 2910 - 2924
  • [37] MGPUSim: Enabling Multi-GPU Performance Modeling and Optimization
    Sun, Yifan
    Baruah, Trinayan
    Mojumder, Saiful A.
    Dong, Shi
    Gong, Xiang
    Treadway, Shane
    Bao, Yuhui
    Hance, Spencer
    McCardwell, Carter
    Zhao, Vincent
    Barclay, Harrison
    Ziabari, Amir Kavyan
    Chen, Zhongliang
    Ubal, Rafael
    Abelian, Jose L.
    Kim, John
    Joshi, Ajay
    Kaeli, David
    PROCEEDINGS OF THE 2019 46TH INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE (ISCA '19), 2019, : 197 - 209
  • [38] An efficient scheme for multi-GPU TTI reverse time migration
    Guo-Feng Liu
    Xiao-Hong Meng
    Zhen-Jiang Yu
    Ding-Jin Liu
    Applied Geophysics, 2019, 16 : 56 - 63
  • [39] Towards High-Performance Code Generation for Multi-GPU Clusters Based on a Domain-Specific Language for Algorithmic Skeletons
    Fabian Wrede
    Herbert Kuchen
    International Journal of Parallel Programming, 2020, 48 : 713 - 728
  • [40] Solving incompressible two-phase flows on multi-GPU clusters
    Zaspel, Peter
    Griebel, Michael
    COMPUTERS & FLUIDS, 2013, 80 : 356 - 364