MULTI-GPU DGEMM AND HIGH PERFORMANCE LINPACK ON HIGHLY ENERGY-EFFICIENT CLUSTERS

被引:4
|
作者
Rohr, David [1 ]
Bach, Matthias [1 ]
Kretz, Matthias [1 ]
Lindenstruth, Volker [1 ]
机构
[1] Goethe Univ Frankfurt, Frankfurt Inst Adv Studies, D-60438 Frankfurt, Germany
关键词
DGEMM; double-precision general matrix multiply; GPGPU; Green IT; heterogeneous (hybrid) systems; High Performance Linpack; HPL; multi-GPU; system architecture;
D O I
10.1109/MM.2011.66
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
High Performance Linpack can maximize requirements throughout a computer system. An efficient multi-GPU double-precision general matrix multiply (DGEMM), together with adjustments to the HPL, is required to utilize a heterogeneous computer to its full extent. The authors present the resulting energy-efficiency measurements and suggest a cluster design that can utilize multiple GPUs. © 2011 IEEE.
引用
收藏
页码:18 / 26
页数:9
相关论文
共 50 条
  • [1] An Energy-Efficient Multi-GPU Supercomputer
    Rohr, David
    Kalcher, Sebastian
    Bach, Matthias
    Alaqeeli, Abdulqadir A.
    Alzaid, Hani M.
    Eschweiler, Dominic
    Lindenstruth, Volker
    Alkhereyf, Sakhar B.
    Alharthi, Ahmad
    Almubarak, Abdulelah
    Alqwaiz, Ibraheem
    Bin Suliman, Riman
    2014 IEEE INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS, 2014 IEEE 6TH INTL SYMP ON CYBERSPACE SAFETY AND SECURITY, 2014 IEEE 11TH INTL CONF ON EMBEDDED SOFTWARE AND SYST (HPCC,CSS,ICESS), 2014, : 42 - 45
  • [2] Accelerating LINPACK with MPI-OpenCL on Clusters of Multi-GPU Nodes
    Jo, Gangwon
    Nah, Jeongho
    Lee, Jun
    Kim, Jungwon
    Lee, Jaejin
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2015, 26 (07) : 1814 - 1825
  • [3] A flexible and portable large-scale DGEMM library for Linpack on next-generation multi-GPU systems
    Rohr, David
    Lindenstruth, Volker
    23RD EUROMICRO INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED, AND NETWORK-BASED PROCESSING (PDP 2015), 2015, : 664 - 668
  • [4] GreenMD: Energy-efficient Matrix Decomposition on Heterogeneous Multi-GPU Systems
    Zamani, Hadi
    Bhuyan, Laxmi
    Chen, Jieyang
    Chen, Zizhong
    ACM TRANSACTIONS ON PARALLEL COMPUTING, 2023, 10 (02)
  • [5] Multi-GPU Design and Performance Evaluation of Homomorphic Encryption on GPU Clusters
    Al Badawi, Ahmad
    Veeravalli, Bharadwaj
    Lin, Jie
    Xiao, Nan
    Kazuaki, Matsumura
    Khin Mi Mi, Aung
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2021, 32 (02) : 379 - 391
  • [6] Towards Energy-Efficient Real-Time Scheduling of Heterogeneous Multi-GPU Systems
    Wang, Yidi
    Karimi, Mohsen
    Kim, Hyoseung
    2022 IEEE 43RD REAL-TIME SYSTEMS SYMPOSIUM (RTSS 2022), 2022, : 409 - 421
  • [7] Efficient implementation of data flow graphs on multi-gpu clusters
    Vincent Boulos
    Sylvain Huet
    Vincent Fristot
    Luc Salvo
    Dominique Houzet
    Journal of Real-Time Image Processing, 2014, 9 : 217 - 232
  • [8] Efficient implementation of data flow graphs on multi-gpu clusters
    Boulos, Vincent
    Huet, Sylvain
    Fristot, Vincent
    Salvo, Luc
    Houzet, Dominique
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2014, 9 (01) : 217 - 232
  • [9] Efficient SDS Simulations on Multi-GPU Nodes of XSEDE High-end Clusters
    Schlachter, Samuel
    Herbein, Stephen
    Taufer, Michela
    Ou, Shuching
    Patel, Sandeep
    Logan, Jeremy S.
    2013 IEEE 9TH INTERNATIONAL CONFERENCE ON E-SCIENCE (E-SCIENCE), 2013, : 116 - 123
  • [10] High performance conjugate gradient solver on multi-GPU clusters using hypergraph partitioning
    Cevahir, Ali
    Nukada, Akira
    Matsuoka, Satoshi
    COMPUTER SCIENCE-RESEARCH AND DEVELOPMENT, 2010, 25 (1-2): : 83 - 91