Nonlinear excitation of the ablative Rayleigh-Taylor instability for all wave numbers

被引:21
|
作者
Zhang, H. [1 ,2 ]
Betti, R. [1 ,2 ]
Gopalaswamy, V. [1 ,2 ]
Yan, R. [3 ]
Aluie, H. [1 ,2 ]
机构
[1] Univ Rochester, Dept Mech Engn, Rochester, NY 14627 USA
[2] Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14627 USA
[3] Univ Sci & Technol China, Dept Modern Mech, Hefei 230026, Anhui, Peoples R China
关键词
INERTIAL CONFINEMENT FUSION; STABILITY;
D O I
10.1103/PhysRevE.97.011203
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Small-scale perturbations in the ablative Rayleigh-Taylor instability (ARTI) are often neglected because they are linearly stable when their wavelength is shorter than a linear cutoff. Using two-dimensional (2D) and three-dimensional (3D) numerical simulations, it is shown that linearly stable modes of any wavelength can be destabilized. This instability regime requires finite amplitude initial perturbations and linearly stable ARTI modes to be more easily destabilized in 3D than in 2D. It is shown that for conditions found in laser fusion targets, short wavelength ARTI modes are more efficient at driving mixing of ablated material throughout the target since the nonlinear bubble density increases with the wave number and small-scale bubbles carry a larger mass flux of mixed material.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Thin-shell effects on nonlinear bubble evolution in the ablative Rayleigh-Taylor instability
    Liu, Y. X.
    Wang, L. F.
    Zhao, K. G.
    Li, Z. Y.
    Wu, J. F.
    Ye, W. H.
    Li, Y. J.
    PHYSICS OF PLASMAS, 2022, 29 (08)
  • [32] Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability
    Yan, R.
    Betti, R.
    Sanz, J.
    Aluie, H.
    Liu, B.
    Frank, A.
    PHYSICS OF PLASMAS, 2016, 23 (02)
  • [33] Nonlinear spectrum of the ablative Rayleigh-Taylor instability in laser-accelerated planar plasmas
    Keskinen, M. J.
    Schmitt, A.
    PHYSICS OF PLASMAS, 2007, 14 (01)
  • [34] Jet-Like Long Spike in Nonlinear Evolution of Ablative Rayleigh-Taylor Instability
    Ye Wen-Hua
    Wang Li-Feng
    He Xian-Tu
    CHINESE PHYSICS LETTERS, 2010, 27 (12)
  • [35] Weakly nonlinear theory for the ablative Rayleigh-Taylor instability -: art. no. 185003
    Garnier, J
    Raviart, PA
    Cherfils-Clérouin, C
    Masse, L
    PHYSICAL REVIEW LETTERS, 2003, 90 (18)
  • [36] Numerical Simulation of Anisotropic Preheating Ablative Rayleigh-Taylor Instability
    Wang Li-Feng
    Ye Wen-Hua
    Li Ying-Jun
    CHINESE PHYSICS LETTERS, 2010, 27 (02)
  • [37] MODE-COUPLING THEORY IN ABLATIVE RAYLEIGH-TAYLOR INSTABILITY
    HASEGAWA, S
    NISHIHARA, K
    PHYSICS OF PLASMAS, 1995, 2 (12) : 4606 - 4616
  • [38] Role of hot electrons in mitigating ablative Rayleigh-Taylor instability
    Li, Jun
    Yan, Rui
    Zhao, Bin
    Zheng, Jian
    Zhang, Huasen
    Lu, Xiyun
    PHYSICS OF PLASMAS, 2023, 30 (02)
  • [39] Analytical model of the ablative Rayleigh-Taylor instability in the deceleration phase
    Sanz, J
    Bettti, R
    PHYSICS OF PLASMAS, 2005, 12 (04) : 1 - 12
  • [40] Comprehensive diagnosis of growth rates of the ablative Rayleigh-Taylor instability
    Azechi, H.
    Sakaiya, T.
    Fujioka, S.
    Tamari, Y.
    Otani, K.
    Shigemori, K.
    Nakai, M.
    Shiraga, H.
    Miyanaga, N.
    Mima, K.
    PHYSICAL REVIEW LETTERS, 2007, 98 (04)