Nonlinear excitation of the ablative Rayleigh-Taylor instability for all wave numbers

被引:21
|
作者
Zhang, H. [1 ,2 ]
Betti, R. [1 ,2 ]
Gopalaswamy, V. [1 ,2 ]
Yan, R. [3 ]
Aluie, H. [1 ,2 ]
机构
[1] Univ Rochester, Dept Mech Engn, Rochester, NY 14627 USA
[2] Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14627 USA
[3] Univ Sci & Technol China, Dept Modern Mech, Hefei 230026, Anhui, Peoples R China
关键词
INERTIAL CONFINEMENT FUSION; STABILITY;
D O I
10.1103/PhysRevE.97.011203
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Small-scale perturbations in the ablative Rayleigh-Taylor instability (ARTI) are often neglected because they are linearly stable when their wavelength is shorter than a linear cutoff. Using two-dimensional (2D) and three-dimensional (3D) numerical simulations, it is shown that linearly stable modes of any wavelength can be destabilized. This instability regime requires finite amplitude initial perturbations and linearly stable ARTI modes to be more easily destabilized in 3D than in 2D. It is shown that for conditions found in laser fusion targets, short wavelength ARTI modes are more efficient at driving mixing of ablated material throughout the target since the nonlinear bubble density increases with the wave number and small-scale bubbles carry a larger mass flux of mixed material.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] NUMERICAL-SIMULATION OF ABLATIVE RAYLEIGH-TAYLOR INSTABILITY
    GARDNER, JH
    BODNER, SE
    DAHLBURG, JP
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1991, 3 (04): : 1070 - 1074
  • [22] NOTE ON NONLINEAR RAYLEIGH-TAYLOR INSTABILITY
    MALIK, SK
    SINGH, M
    ASTROPHYSICS AND SPACE SCIENCE, 1984, 106 (01) : 205 - 206
  • [23] Rayleigh-Taylor Instability in Nonlinear Optics
    Jia, Shu
    Fleischer, Jason W.
    2009 CONFERENCE ON LASERS AND ELECTRO-OPTICS AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (CLEO/QELS 2009), VOLS 1-5, 2009, : 1429 - 1430
  • [24] Ablative stabilization of the deceleration phase Rayleigh-Taylor instability
    Lobatchev, V
    Betti, R
    PHYSICAL REVIEW LETTERS, 2000, 85 (21) : 4522 - 4525
  • [25] Coupled model analysis of the ablative Rayleigh-Taylor instability
    Kuang, Yuanyuan
    Lu, Yan
    Lin, Zhi
    Yang, Ming
    PLASMA SCIENCE & TECHNOLOGY, 2023, 25 (05)
  • [26] Effect of initial phase on the ablative Rayleigh-Taylor instability
    Kuang, Yuanyuan
    Lu, Yan
    Lin, Zhi
    Yang, Ming
    PHYSICS OF PLASMAS, 2023, 30 (10)
  • [27] Ablative stabilization of short wavelength Rayleigh-Taylor instability
    Atzeni, S
    NUCLEAR FUSION, 1996, 36 (01) : 69 - 74
  • [28] NONLINEAR RAYLEIGH-TAYLOR INSTABILITY IN HYDROMAGNETICS
    KALRA, GL
    KATHURIA, SN
    JOURNAL OF PLASMA PHYSICS, 1976, 15 (APR) : 239 - 244
  • [29] Numerical study on the laser ablative Rayleigh-Taylor instability
    Li, Zhiyuan
    Wang, Lifeng
    Wu, Junfeng
    Ye, Wenhua
    ACTA MECHANICA SINICA, 2020, 36 (04) : 789 - 796
  • [30] Magnetized ablative Rayleigh-Taylor instability in three dimensions
    Walsh, C. A.
    PHYSICAL REVIEW E, 2022, 105 (02)