Nonlinear excitation of the ablative Rayleigh-Taylor instability for all wave numbers

被引:21
|
作者
Zhang, H. [1 ,2 ]
Betti, R. [1 ,2 ]
Gopalaswamy, V. [1 ,2 ]
Yan, R. [3 ]
Aluie, H. [1 ,2 ]
机构
[1] Univ Rochester, Dept Mech Engn, Rochester, NY 14627 USA
[2] Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14627 USA
[3] Univ Sci & Technol China, Dept Modern Mech, Hefei 230026, Anhui, Peoples R China
关键词
INERTIAL CONFINEMENT FUSION; STABILITY;
D O I
10.1103/PhysRevE.97.011203
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Small-scale perturbations in the ablative Rayleigh-Taylor instability (ARTI) are often neglected because they are linearly stable when their wavelength is shorter than a linear cutoff. Using two-dimensional (2D) and three-dimensional (3D) numerical simulations, it is shown that linearly stable modes of any wavelength can be destabilized. This instability regime requires finite amplitude initial perturbations and linearly stable ARTI modes to be more easily destabilized in 3D than in 2D. It is shown that for conditions found in laser fusion targets, short wavelength ARTI modes are more efficient at driving mixing of ablated material throughout the target since the nonlinear bubble density increases with the wave number and small-scale bubbles carry a larger mass flux of mixed material.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] MULTIPLE CUTOFF WAVE-NUMBERS OF THE ABLATIVE RAYLEIGH-TAYLOR INSTABILITY
    BETTI, R
    GONCHAROV, V
    MCCRORY, RL
    TURANO, E
    VERDON, CP
    PHYSICAL REVIEW E, 1994, 50 (05): : 3968 - 3972
  • [2] Nonlinear theory of the ablative Rayleigh-Taylor instability
    Sanz, J
    Betti, R
    Ramis, R
    Ramírez, J
    PLASMA PHYSICS AND CONTROLLED FUSION, 2004, 46 : B367 - B380
  • [3] Statistical approach of weakly nonlinear ablative Rayleigh-Taylor instability
    Garnier, J
    Masse, L
    PHYSICS OF PLASMAS, 2005, 12 (06) : 1 - 11
  • [4] Effect of preheating on the nonlinear evolution of the ablative Rayleigh-Taylor instability
    Ye, W. H.
    He, X. T.
    Zhang, W. Y.
    Yu, M. Y.
    EPL, 2011, 96 (03)
  • [5] NONLINEAR EVOLUTION OF ABLATIVE-DRIVEN RAYLEIGH-TAYLOR INSTABILITY
    BORIS, JP
    BODNER, SE
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1976, 21 (09): : 1103 - 1103
  • [6] ABLATIVE RAYLEIGH-TAYLOR INSTABILITY IN 3 DIMENSIONS
    DAHLBURG, JP
    GARDNER, JH
    PHYSICAL REVIEW A, 1990, 41 (10): : 5695 - 5698
  • [7] Bubble acceleration in the ablative Rayleigh-Taylor instability
    Betti, R.
    Sanz, J.
    PHYSICAL REVIEW LETTERS, 2006, 97 (20)
  • [8] Ablation effects in weakly nonlinear stage of the ablative Rayleigh-Taylor instability
    Hasegawa, S
    Nishihara, K
    LASER AND PARTICLE BEAMS, 1996, 14 (01) : 45 - 54
  • [9] Magnetic-field generation by the ablative nonlinear Rayleigh-Taylor instability
    Nilson, Philip M.
    Gao, L.
    Igumenshchev, I. V.
    Fiksel, G.
    Yan, R.
    Davies, J. R.
    Martinez, D.
    Smalyuk, V. A.
    Haines, M. G.
    Blackman, E. G.
    Froula, D. H.
    Betti, R.
    Meyerhofer, D. D.
    JOURNAL OF PLASMA PHYSICS, 2015, 81
  • [10] COMPUTATIONAL STUDY OF ABLATIVE RAYLEIGH-TAYLOR INSTABILITY
    GLANVILLE, M
    DEGROOT, JS
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1978, 23 (07): : 809 - 809